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In this paper, we study the stage of planetary formation during

which the particulate material is still dispersed as centimeter-to-

meter sized primordial aggregates. During this stage, particles are

able to settle toward the midplane into a layer of mass density

comparable to or much greater than that of the gas. Nonlinear,

coupled interactions between the particles and the nebula gas be-

come significant and ultimately determine the vertical profiles of

the particle density and the mean velocities of the particles and

the nearby gas. This is the environment in which the earliest

planetesimals probably form. Our numerical models rely on the

Reynolds averaged Navier-Stokes equations for the gas and parti-

cles and are fully viscous and turbulent (and, for the particles,

compressible). Our turbulence modeling uses a Prandtl local shear

parametrization, validated by laboratory experiments. We have

developed a new model for particle diffusion involving the profile

of the nebula gas turbulence and the particle Schmidt number,

which is a function of particle size and density. We model a cool,

quiescent nebula at 1 AU (280K) and 10 AU (90K) and a higher

temperature stage (1000K) at 1 AU.

Our main results include: (a) rapid accretion of planetesimals

by gravitationally unstable fragmentation on an orbital time scale

(the "Goldreich-Ward instability") is unlikely to occur until ob-

jects have already accreted by some other process to the mass 'of

the largest known meteorite samples, if at all; (b) from "seeds"

as small as 10 m, growth of 10- to 100-km planetesimals can

proceed rapidly by drift-augmented accretion in the particle-rich

midplane with orbital decay of about 1% for the growing planetesi-

mals; (c) outward transport of vapor and small entrained chips

can account for significant radial compositional and mineralogical
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mixing in primitive meteorite parent bodies. Other implications

may be drawn concerning particle random collisional velocities

and the time scales of midplane turbulence. © 1993AcademicPress, Inc.

1. INTRODUCTION

Over the past decade, a number of theoretical and ob-

servational studies have suggested that flattened disks of

dust and gas will form as a natural by-product of stellar

formation and have established their global thermal and

dynamical properties (see, e.g., Protostars and Planets

III for recent reviews). In broad form, flattened disks

of dusty gas result from gravitational collapse of dense

regions of interstellar clouds (Cassen et al. 1985). Colli-

sional accretion of comet-sized planetesimals within such

a disk leads to the growth of dense planetary cores (Safro-

nov 1969), followed, at least in the outer Solar System,

by hydrodynamical accretion of nebula gas to form jovian-

type planets (Mizuno et al. 1978). However, poorly under-

stood stages connect these landmark events.

One major area of current uncertainty is the transition

from a gas-dominated accretion disk to a disk of comet-

sized planetesimals. In this stage, which is the topic of

this paper, collective aerodynamic interactions between

macroscopic particles and the surrounding gaseous nebula

involve complex feedback processes which affect the evo-

lution of the gas and particle phases in different ways.

In fluid dynamics, these are known as two-phase fluid

systems. In most research to date, this stage has been

neglected. Typical protoplanetary nebula models assume

that the particle phase is composed of interstellar-sized

grains, which are strongly coupled to the gas by drag
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forces and remain uniformly mixed, merely increasing the

density of the gas phase. Since the average mass density

of the solids is only 1% or so of the gas density, such

solids have little dynamical influence.

Practically all of our tangible evidence of planetesimal
accretion is in the form of meteorites with masses less

than 104 kg, many of which show little or no evidence

for metamorphic processes beyond mere compression.

Primitive meteorites in this mass range overwhelmingly

point to an abundance of constituent building blocks in

the 0.01-1-cm size range, although the process by which

these constituents (primarily "chondrules" and their min-

eralogical relatives) are first created and accumulated is

not understood. On independent theoretical grounds, it

is generally accepted that grain growth leads rapidly (in

103-104 orbit times) from interstellar grain sized to centi-

meter-sized particles which are assumed to settle to the

nebula midplane in tens or hundreds of orbit times (V61k

et al. 1980, Weidenschilling 1984, Mizuno et al. 1988, and

Weidenschilling and Cuzzi 1993). This accretion probably

proceeds efficiently, with sticking coefficient of order

unity, until particles are about 1 m in size and impact

cratering or disruption becomes significant (Chokshi et al.

1993). Subsequently, collisional accretion and destruction

processes could be in rough balance. Weidenschilling
(1984) modeled a situation in which extended evolution

occurred without significant change in the particle size
distribution once accretion had proceeded to this point.

In this paper we restrict ourselves to particles smaller
than about 1 m in radius.

The dynamical effects of dust-gas segregation were

downplayed in early studies which hypothesized a gravita-

tional instability in this settled particle phase (Edgeworth

1949, Safronov 1969, and Goldreich and Ward 1973). De-

spite several subsequent attacks on this aspect of the

problem by Weidenschilling (1980, 1984, 1988), it is still

widely assumed in the community that the particle layer

quickly becomes gravitationally unstable, leading imme-

diately to a population of comet-sized planetesimals which

are sufficiently large to be entirely decoupled from the

gas. In this paper, we demonstrate that this is unlikely to

occur until particles have grown by binary accretion or

by sticking to a sufficient size (meters or larger) that they

already contain the mass equivalent of practically all ex-

isting primitive meteorite samples.
The quantity triggering gravitational instability is the

volume mass density pp of the particulates. The condition
for gravitational instability, while formally derived by
finding growing modes from a dispersion relation, is equiv-

alent to the condition that the oscillation frequency due

to solar gravity be less than that due to local self-gravity

(cf. Toomre 1964),

ep_ _ Hp_ 2 _2

"rrGo'p "rrGo-p 7"rGpp < 1, (I)

where Cp is the typical random velocity of the particles,
f_ is their orbital angular velocity, G is the gravitational

constant, O-p _ ppHp is surface mass density, and the

thickness of the particle layer is kip -_ Cp/fL This reduces

to a critical particle volume mass density of Pp,crit _" _'_2/

_rG _ Me/_rr 3. Other, more detailed treatments provide

improved estimates of the minimum critical density for

an initial axisymmetric perturbation (having scale length

8-10 Hp) of Pp,crit _" 3Mo/2_rr3 (Safronov 1987, 1991) or
-15MU8_rr 3 (Sekiya 1983). These critical densities can

be expressed as 2.0-2.5p*, where the quantity p* = 3Me�

47rr 3 is the mass of the Sun averaged over a spherical

volume with radius equal to the distance of the perturba-
tion from the Sun. Actual bound fragments with these

length scales require a considerably higher critical density

(-150"; Coradini et al. 1981, Safronov 1991) to become

unstable, which Safronov (1991) suggests might result

from an extended evolution which begins with an axisym-

metric instability. Further subtleties of gravitational insta-

bility are beyond the scope of this paper; for our purposes,

we adopt the critical density criterion Pp,crit = 2pro of
Safronov (1991) noted above as a necessary condition for

any gravitational instability. This criterion may be used

by itself or to estimate a vertical thickness Hp _ O-p/pp,crit.
At 1 AU from the protosun, for example, where the usual

"minimum mass nebula" assumption gives % _ 10 g

cm -2, incipient gravitational instability requires Hp _< l03

km, associated with particle random velocities Cp _ Hpf_
< 20 cm sec i. The more dramatic Goldreich-Wardfrag-

mentation scenario requires layer thicknesses and random

velocities that are at least an order of magnitude smaller.

Because the gas-rich envelope of the protoplanetary

nebula is partly supported by an internal pressure gradient

(Weidenschilling 1977, and Section 2.1 below), its orbital

speed at I AU is 50-100 m sec -I slower than that of

the particle-dominated layer (at a nebula temperature of

roughly 300 K). Fractionally this is less than I%. How-

ever, in a region near the midplane where settling of partic-

ulates has brought their mass density to a value ap-

proaching or exceeding that of the gas, drag forces

accelerate the entrained gas nearly to Keplerian velocity.
This velocity difference generates a turbulent shear zone

between the particle-dominated layer and the gas-domi-

nated regions above and below, with turbulent speeds on
the order of several meters per second. Turbulent and

dynamical time scales in the boundary layer are much

longer than the stopping times t_ of millimeter-to-centime-

ter scale particles due to aerodynamic drag. Consequently

the dispersion velocity cp of such particles is also excited
to a value of several meters per second, comparable to

that of the gas fluctuations and sufficient to prevent further

settling (Weidenschilling 1980, Coradini et al. 1980). Us-

ing such scaling arguments, Weidenschilling (1980) esti-

mated a minimum thickness of the particle layer Hp which
was about an order of magnitude too large for the Gold-
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reich-Wardinstability(GWI)tooccur.Althoughthisvery
severeproblemhasbeenknownfor overa decadeand
duly noted in recentreviews(Weidenschilling1988,
Weidenschillinget al. 1989, Wetherill 1990), it has not

been thoroughly appreciated in the broad community

(e.g., Sekiya and Nakagawa 1988, Wasson and Kallemeyn
1988, Haack et al. 1990, Barge and Pellat 1991, Ruden

and Pollack 1991, Kolvoord and Greenberg 1992, Wata-

nabe and Miyama 1992, Grimm and McSween 1993). In

this paper, we present detailed numerical calculations as
further evidence that gravitational instability does not oc-

cur as originally suggested in disks of centimeter-scale

particles, and demonstrate that it will not occur even for

orders of magnitude more massive particles between 10
cm and 1 m in radius.

The most detailed recent study of gas-particle interac-

tions in the nebula, by Nakagawa et al. (1986), obtains

the particle and gas densities and velocities analytically

in a two-phase nebula under certain simplifying assump-

tions. They demonstrate how the headwind between the

particles and the surrounding pressure-supported gas

(Whipple 1972, Adachi et al. 1976, Weidenschilling 1977)

diminishes in a dust-dominated central layer, where the

mass-dominant particles drive the intermingled gas to ve-

locities approaching Keplerian. However, their nebula is

assumed to be inviscid (i.e., laminar or nonturbulent)

which is internally inconsistent; as noted above, the steep

vertical gradient in the orbital velocity, between the gas

entrained within the particle layer and that in the overlying

pressure-supported region of the nebula, is capable of

generating a turbulent viscosity in and of itself, which

will alter the particle vertical distribution (Weidenschilling
1980). Consequently, the particle density distribution can-

not be constrained by the Nakagawa et al. model. Despite
this inconsistency, for a given particle vertical distribu-

tion, the Nakagawa et al. model does a fair job of roughly

predicting the mean flows of the two phases, and is being

used as part of some ongoing particle accretion modeling

(e.g., Weidenschilling and Cuzzi 1993). In this paper, we

present a fully viscous model suitable for further studies

of the final stages of settling and particle accretion in

which planetesimal formation must occur.
We have assumed that there is no other source of turbu-

lence during the stages we model. Various mechanisms

for inducing global nebula turbulence have been widely

discussed but remain controversial. Elmegreen (1978,

1979) suggested that stellar wind flows across the face of

the nebula induce turbulence. Lin and Papaloizou (1980)

suggested that thermal convection drives nebula turbu-

lence. Prinn (1990) suggested that mismatches between

infall and orbital velocities generate turbulence. Observa-
tions of T Tauri stars show that the "active" or classical

T Tauri (CTT) stage of disk evolution is characterized by
strong winds and high thermal luminosity such as might

characterize a large global turbulent viscosity; however,

this stage seems to last only a few million years. Currently

accepted values of nebula kinematic viscosity in the CTT
stage are on the order of 10_3-1015 cm 2 sec -1, several

orders of magnitude larger than values we will present
here. In addition, brief but energetic "FU Orionis" phases

are believed to punctuate the CTT stage (Hartmann et
al. 1993); in these stages a considerable fraction of the

circumstellar disk and its particulates, at least out to 1

AU, may be heated to 1000 K or more. "Weak-line"
T Tauri (WTT) systems have a much lower particulate

opacity, possibly due to accumulation of microscopic dust

into larger particles such as studied here (Cuzzi and
Weidenschilling 1992, Miyake and Nakagawa 1992, 1993),

and show no evidence for significant global viscosity.

More of these systems seem slightly older than compara-

ble numbers of CTT systems--possibly ranging into the

107-year stage tentatively indicated in the range of meteor-

ite accumulation ages (Swindle and Podosek 1988). Note

that there is no evidence that either the nebula gas or the

particulates have been removed by this time--merely that

the particulate opacity and overall luminosity have dimin-

ished greatly.

One certainly expects that there will be a stage during

which the opacity and turbulence in the protoplanetary

disk decrease, probably that during which most of the

particle accumulation occurs. It may even be that particle

growth causes cessation of strong convection and the

associated large turbulent viscosity by diminishing the

Rosseland mean opacity and its temperature dependence
below critical threshold values (Cuzzi and Weidenschil-

ling 1992). This may or may not be what is known as the

weak line T Tauri stage. In the present paper we focus

on parameters which are appropriate for such a low global

viscosity, post-CTT stage. In any case, our assumption
of zero global turbulence provides the most conservative

possible situation for preventing particulate layers from
undergoing gravitational instability; any global turbulence
would add to the self-consistent shear turbulence we cal-

culate, further enhancing vertical diffusion of the parti-

cles, and occurrence of the GWI would be even more

strongly precluded. We return to these implications in
Section 5.

The extensive array of symbols used in this paper is

summarized in Appendix C. In Section 2, we discuss our

method of solution; some readers may wish to skip this

section initially. Many of the critical details are contained

in Appendices A and B. Section 2.1 summarizes our fun-

damental equations. Appendix A derives these equations,

while discussing some of the critical subtleties involved

in merely obtaining a proper set of two-phase fluid equa-

tions to solve. The primitive equations governing both

gas and particle phases must be averaged in some way
to remove the unknown fluctuating density and velocity

components. This process generates correlation terms of

two types: products of velocity fluctuations alone and
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products of both velocity and density fluctuations. Section

2.2 shows how we model the velocity-velocity correla-

tions physically, in terms of the gas turbulent viscosity

and turbulent kinetic energy. In Section 2.3 we present our

approach to modeling the density-velocity correlations,

which leads to a diffusion equation for particles in the

turbulence. In Section 2.4 we quickly summarize some

details of our numerical procedure. In Section 3 we pre-

sent the parametrized nebula physical model we adopt,

while Section 4 presents our results for a variety of nebula
environments. Those more interested in results than in

our methodology and the basic fluid dynamics may wish

to begin with Section 3 or 4. In Section 5, we discuss

some interesting implications of our work for planetesimal

growth and minerological mixing. We summarize our con-
clusions in Section 6.

2. SOLUTION TECHNIQUE

2.1. Equations of Motion

The continuity and momentum equations for each phase

must be solved simultaneously. The equations are formu-

lated and solved in cylindrical geometry. The equations

are expanded in detail in Appendix A; our coordinate and

velocity system is (r, 0, z, u, v, w) for both gas and

particles. Azimuthal symmetry (0/00 = 0) is assumed,

and radial variation is demonstrably smaller than vertical
variation in all dependent variables (O/Or _ O/Oz). This

leads naturally to a 1-D (vertical) solution space. The gas

density is very nearly constant (see below); the continuity
equation for the particle density is of the form

0
pp + _7 " (ppVp) = 0, (2)

where Vp is the particle vector velocity and pp is the parti-
cle volume mass density.

The momentum equations may be expressed in the gen-
eral form

0
at(or) +p(v.V)v +vV.(pv) = -VP-pV_

_+pp(Vp -- Vg)/t s. (3)

the drag term. In either case, t_ is the stopping time of

the particles in the gas, which is inversely proportional

to their drag coefficient (Weidenschilling 1977; see Section

2.3.2). Transport terms due to molecular viscosity have

been neglected, as turbulent viscosity dominates. In sev-

eral instances below, we will make use of the fact that

our goal is a time-invariant, steady-state solution.

As described in Appendix A, the primitive equations are

treated by separating the particle density and all velocity

components into mean and fluctuating parts:

z t. t. l
Vg Vg -l- Vg, Vp = Vp + Vp, pp = _p + pp. (4)

The equations are expanded out and time averaged

(Reynolds averaged) as described in Appendix A; prod-

ucts involving only one fluctuating quantity time average

to zero, but products of fluctuating quantities cannot be
assumed to do so. These correlations are modeled as

described in the following sections.

The resulting system proves to be "stiff," or difficult

to solve numerically, because the mean gas and particle

velocities are dominated by their azimuthal components.
Vertical and radial drift velocities can be as small as a

few centimeters per second compared to orbital speeds

of tens of kilometers per second. This large dynamic range

led us to a perturbation approach; accordingly we further
expanded the mean azimuthal velocities as

_g = v0 + v*,_p = vK + v*, (5)

where

VK = _ (6)

is the Keplerian speed of a free particle orbiting the Sun

at a radius r, and the orbital velocity of the gas including
its pressure gradient is

Here,

v 0 = (1 - _0)VK. (7)

r OP
10 -3 (8)

-r/= zk"PgV_Or

Equations (3) above are just the Navier-Stokes equations

in conservative form, including pressure, gravity, and gas
drag terms, respectively, on the right-hand side. In these

equations, the velocities are in an inertial frame, and

is the gravitational potential from the Sun. For the gas
phase, P is simply the thermodynamic pressure and the

upper sign is chosen in the gas drag (last) term; for the

particle phase P = 0 while the lower sign is chosen in

after Adachi et al. (1976; see also Nakagawa et al. 1986,

but note misprint in their Eq. (1.9)). That is, our unper-

turbed state has the particles in Keplerian rotation (at

the equator) and the gas rotating slightly slower due to

pressure support with its radial pressure gradient parame-
trized by 0.

This choice of a basic state simplifies the equations of

motion (Eqs. (A11)-(A13) of Appendix A) considerably,
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becausethelargestterms--_GMr/R3andpv2/r in Eq.

(AI 1) nearly cancel. Several other terms can also be ne-

glected by scaling. For example, _(0/0r) _ is negligible

compared with _(0/0z) ¥, while azimuthal derivatives

0/00 are neglected by the assumption of rotational symme-

try. For the particle phase, P = 0 and (O/at)p'v' is ne-

glected relative to -_(O/Ot) _, so that the momentum Eqs.

(A11)-(A13) become

(_ -- 0 m

pp _ Up "Jr- ppWp _ZZ Up = 2(fipV* + lopVp)VK/r

0 0 , ,_ , ,0_
oz - (lopu wp - lopW oz

-- pp(_p -- Kg)/t_, (9)

0 , 0 • = !-_
tip _ Up 1- lopWp _ Up --,,(tOp p Jr- lotpUtp)UK/r

0 0 , ,-- , , 0 O,
0g (fipV'pW'p) -- _ZZ(ppVpWp) -- lopWp 0Z p

- * - v_)/ts, (10)pp(_VK + Vp

0 0 ----2

05 (fiPWP) _- _Z. (lopWp) z --fipGMg/r 3

0 (9 ! t--

0Z (ppW'gW'g) - 2 _ (lopWpWp) - fip-Wp/t_. (11)

By the same token, the particle continuity Eq. (A7) re-
duces to

0 m 0_ -- m_lop q- (lopWp + /pW;) = 0. (12)

The equations of motion for the gas are even simpler.

Because our region of interest is significantly thinner than

the gas vertical scale height, and because bulk gas motions

are far slower than the sound speed, the gas is treated as

incompressible at a constant density. That is, we assume

log = 0 = _g. Therefore we do not solve the equation of
vertical momentum (A13) for the gas, while the gas conti-

nuity Eq. (A7) reduces to

0 m

=& = 0. (13)
ot

For the gas, the central force gravity, centrifugal, and

pressure gradient terms nearly cancel and, as in the parti-
cle equations, we drop demonstrably small terms to leave

O_ff = 2_gVoV_/r_ 0 _ , ,Pg Ot g _z (logHgWg) Jr- pp(Up -- Ug)/t s, (14)

_ 0 , 1 _ -
log _ Vg -- 5 logO°Ug/r -- _ (pgV'gW'g)

* - v*)/t_. (15)-]- pp(q_V K -_- Up

2.2. Modeling Shear-Driven Turbulence

Above and in Appendix A, we have described how we

arrive at the equation set, which contains a variety of

terms relating the mean quantities of interest by time

averages of unknown fluctuating quantities. In the next
few subsections, we describe our procedure for modeling

these time-averaged correlation terms. The first part of

this modeling will be familiar (Schlichting 1969). In a tech-

nique originally due to Boussinesq, the gas velocity corre-

lations (Reynolds stresses) are expressed in terms of a
scalar kinematic eddy viscosity VT, a scalar turbulent ki-

=- - .... + w'gWg)/2,netic energy per unit mass k (UgUg Jr- UgVg

and gradients of the mean velocity:

2 OVg
uaua = 5 k, V,gWl= - w,

02ig
V'gV'g= _ k, UgW'g = - v T -_-z' (16)

l , = 2 - ' ' = 0.
WgWg _ k, UgVg

In the above equations, we have used scaling relationships

to eliminate the (small) terms in O/Or, as noted previously.

Models of UT and k are described below. Comparable
particle velocity correlation terms occur in the particle

momentum equation, which may be related to k and uT
as discussed in more detail in Section 2.3 and in Appendix

B. Note that the formula for the Reynolds stresses in

Champney and Cuzzi (1990) is misprinted; the factor

(t90 + t9) in their equation (33) should be inside the brack-

ets. The correct expression is equivalent to those given
above.

2.2.1. Turbulent viscosity. It is important to point
out the difference between turbulence caused by thermal

convection (Lin and Papaloizou 1980, Coradini et al. 1980,

Ruden and Lin 1986, Cabot and Pollack 1992) and the
shear-driven turbulence which concerns us herein. The

essential difference lies in the fact that shear-driven turbu-

lence derives its energy from the local mean flow and has

intrinsic length and time scales, whereas thermal convec-

tion derives its energy from the global mean flow and has

length and time scales that depend on the entire energy

budget of the flow as well as on specific details of the
geometry. Since the energy budget depends on the struc-
ture of the turbulence itself, convective turbulence is a

highly nonlinear and poorly characterized phenomenon

(e.g., Cabot et al. 1987a,b, 1990). Additional difficulties
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mayarisein strongly,and/orsystematically,perturbed
systemsinwhichthecorrelationtermsv(v_ may result in
negative or nonscalar "viscosities" (Borderies et al. 1983,

Cabot et al. 1987a,b, 1990, Prinn 1990, Cabot and Pollack

1992). For example, in convective turbulence, where the

large or integral scales are on the order of a gas scale

height in size, rotational anisotropy can be an important

factor (Cabot et al. 1987a,b). Although no form of turbu-

lence is really well understood, shear-driven turbulence

is fairly well constrained in comparison (Tennekes and

Lumley 1972), and a variety of parametrizations provide

satisfactory representations of real shear flows of many

sorts (see, e.g., Schlichting 1969, Rodi 1980, Coakley
1987).

Models of turbulent systems often rely on dimensional

arguments which lead to turbulent viscosities expressed
in scaled form as

12T =- aUL, (17)

where U and L are the characteristic velocity and length

scales, and o_ is a dimensionless coefficient. If U is taken

to be the sound speed and L the scale height, various

current nebula models favor o_ in the poorly constrained
range 10 -2 and 10 -4 on the scale of a disk scale height

(Cabot et al. 1987a,b; see Weidenschilling 1988 and

Weidenschilling and Cuzzi 1993 for recent reviews).

These values are much smaller than those adopted even

in the recent past (e.g., Mizuno et al. 1988, Morrill and
V61k 1984).

More complex parametrizations of turbulent shear flow

include not only dimensional approaches such as the o_-

models, but also (a) experimentally validated but less

widely used (in the astrophysics community) parametric
zero-equation or Prandtl models, (b) one- or k-equation

models (where k is the turbulent kinetic energy per unit

mass), and (c) two-equation or k - e models, where e is

the dissipation rate of k. All relate the turbulent velocity

fluctuations (and the associated turbulent viscosity) to the

mean local properties of the flow. The latter two incorpo-

rate advective and diffusive'transport of k by the flow

itself. We shall see that the specifics of the solution are
sensitive to the various constants involved. In what fol-

lows we make as clear as possible the way in which the
constants enter into the solution.

A simple estimate of the turbulent viscosity in the

boundary layer is obtained as follows. A nonturbulent

flow may be associated with a Reynolds number

UL
Re = --, (18)

Pin

where v m is the molecular kinematic viscosity of the fluid.

It is well known that laminar flow persists while Re is

increased until turbulence sets in at some critical value

of Re = Re*, where the critical Reynolds number Re*

depends on the flow geometry. For larger Re, eddy mo-

tions generate a turbulent viscosity

UL Re
Vf -- Re* - Re* Vm, (19)

such that the effective Reynolds number (UL/vT) remains
fixed at Re*. In a thin shear flow such as the environment

under study here, U may be taken as the total velocity

differential across the turbulent boundary layer between

the Keplerian particles and the pressure-supported gas,

AV = /)K -- O0 _ 10-3/)K (Sections 2.1 and 3). In what

follows we need to distinguish between several different

length scales. Our situation is a somewhat novel blend of

a classic "Ekman" regime, in which the orbital rotation

frequency dominates the overall boundary layer thick-

ness, and a normal nonrotating boundary layer regime

in which the local transport length and time scales are

independent of the orbit frequency. Because the vertical

profiles of gas velocity closely resemble those seen in the

Ekman regime, we adopt as our benchmark vertical length

scale the e-folding thickness of the turbulent Ekman layer

L E in the rotating system, which itself depends on vT as

L E -= (Vy/_Q)I/2 (20)

(Schlichting 1969, Hinze 1975, Goldreich and Ward 1973,

Dobrovolskis 1983). A generic length scale L = CLL e will

be used in all derivatives for scaling purposes, where

Cc is of order unity. Detailed engineering fluid dynamics
formulations, of which we will be making considerable

use, more commonly utilize the specific 1% boundary

layer depth 8, the distance at which the mean flow velocity
differs by only 1% from its free stream value. From the

definition of the Ekman depth L E, 6 = caL E, where c, >

c L. Substituting AV for U and ccL E for L into Eq. (19)
then gives

CLA V(lJT/_) 1/2

VT -- Re*

or

c2zXv2
v v f_Re,2 . (21)

A better turbulence model relates turbulence to the

local velocity shear, such as originally due to Prandtl

(Schlichting 1969, Rodi 1980, Coakley 1987), which may
be written in the form
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.f

PT =- _2S, (22)

where S is a measure of the shear, and f is a characteristic

length scale of the problem, called the mixing length.

For this vertical boundary layer problem, we take e as

proportional to the boundary layer depth 8 and take S as

the vertical gradient of the horizontal velocity:

e=c_8, S= 0-_zV. (23)

Then the turbulent viscosity from (22) becomes

(24)

Using these definitions, laboratory measurements in jet

boundary layer geometries show that c_ = 0.045 (Coakley

1987), as long as the system is negligibly affected by ro-

tation;

U
Rossby number Ro =- _ >> 1. (25)

Below we show this to be the case. Values of c_ = 0.1

provide better fits to observations in slightly different flow

geometries such as wake, shear, or wall-bounded flow

(Coakley 1987, Rodi 1980). In practice, we employ the
Prandtl model in the form of Eq. (24), with the velocity

gradient determined locally, and continuously adjust 8 to
be the actual height at which the perturbed gas velocity
becomes 1% of its maximum value. We have found that

this implies ca is approximately 2.5 and then use this value
to obtain related quantities of interest.

For instance, scaling may be used to obtain a value for

Re*. Solving for v f by approximating the derivative in

Eq. (24) as a ratio of characteristic velocity and length
scales, and using CLL E as the appropriate length scale L,

gives

4 4 2

PT _ (Cv _)2 AV CacvAV
L - c2_ (26)

Comparing this to Eq. (21) for vv in terms of the critical

Reynolds number Re*, we find that (for ca = 2.5, c_ =

0.05 - 0.1 andc L = 1.5)

Re* = c2c_Zc22 _ 45 - 180. (27)

The depth of the 1% shear layer is then 8 = (c_c2Jcc)(AV/

Ft), and the generic scale L = CLL E _ CLAV/_Re*. These
values are only about 10 -4 of the radius in the nebula,

small compared to a typical vertical scale height of the
nebula gas (-10 -_ of the radius).

This scaling also indicates that our situation is probably

never dominated by rotation; the Rossby number (using

L = COLE, and Eqs. (20) and (27)) is

Ro _ --
AV AVLE _ Re*

CLLEf_ CLPT C 2

-- C82Cv 2"_" 20 - 80. (28)

The large Rossby number implies that rotation is unim-

portant in determining the local structure of the turbu-

lence; therefore, the turbulence should be fairly isotropic

and the Prandtl parametrization with c_ _ 0.05 to 0.I
should be satisfactory. On the other hand, the overall

vertical profile is limited by the nebula rotation frequency
(Section 2.2.2). In our numerical modeling, Re* plays a

subsidiary role; rather we adopt a value for the experimen-

tally determined constant c_. The qualitative nature of the
solutions does not depend sensitively on the value of cv.

Note that the Prandtl model assumes the turbulence is

locally generated and damped--that is, turbulence exists

only where velocity gradients exist. Strictly, the Richard-
son number criterion allows turbulence to exist only when

Ri _ _ _-z + Tee \Oz/ < 0.20 - 0.25, (29)

where g = z _2 is the local vertical acceleration of gravity,

Cp is the heat capacity of the gas at constant pressure,

and g/cp is the adiabatic lapse rate (Tennekes and Lumley
1972, Goldreich and Ward 1973). Order-of-magnitude

scaling arguments using typical velocity gradients from
our model results confirm that the Richardson number

criterion is always satisfied on the average in our models,

as has been found by previous workers (Goldreich and

Ward 1973, Weidenschilling 1980). However, very near

the midplane (z _ 8), vertical gradients vanish by symme-

try. This might cause the critical Richardson number crite-

rion of Eq. (29) to be violated locally, implying that turbu-
lence could also vanish near the midplane (Safronov 1991,

1992).

This concern is diminished or removed by consideration

of the next level of sophistication in turbulence modeling,

which includes transport of turbulence by the turbulent

process itself. As mentioned above, state-of-the-art turbu-

lence modeling deals with self-consistent generation,

transport, and damping of turbulence using more complex

one- or two-equation models. In these models, turbulent

viscosity is related to turbulent kinetic energy k, and its

dissipation rate e, as described below. Champney and

Cuzzi (1990) experimented with a two-equation or k-e
model. The k-e model calculations in Champney and

Cuzzi (1990; see also Cuzzi et al. 1989) show that the
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turbulence diffuses itself into the midplane region where

the mean velocity shear, and the Prandtl model turbu-

lence, would approach zero. Simple scaling arguments

in support of this are presented in Section 2.2.2 below.

Although Champney and Cuzzi (1990) found poor quanti-

tative agreement between the k-e and the simpler Prandtl

model, they had assumed Re* = 500 (also adopted by

Goldreich and Ward 1973), which is probably too large;

a smaller value of Re* would improve the agreement. In

this paper, we use a Prandtl model but modify it slightly

to be consistent with the behavior we expect from the

more sophisticated models. To do this, we have generally

adjusted our turbulent kinetic energy (and eddy viscosity)

profiles to be uniform below the maximum shear region

where the turbulence is generated. This is discussed in

the next section, In Section 4 we also present sensitivity

studies which show this simplification to have little effect.

2.2.2. Turbulent kinetic energy and its relationship to

viscosity. Turbulent kinetic energy terms (e.g., u'u' -_

v'v' _ w'w' -_ 2k/3) play a prominent role in the particle

momentum and continuity equations (Appendix A and

Eqs. (9)-(12)). There are several paths to modeling the

turbulent kinetic energy. We begin from the fact that in

isotropic turbulence the off-diagonal elements of the

stress or pressure tensor are a certain fraction of the on-

diagonal elements in magnitude. That is, V[Vj -_ ck
V[V[, where V[V/is a single element and ck --_ 0.4 (Ten-

nekes and Lumley 1972, p. 50). This then leads to

+ O'V' + w'w')

3 3 dV
"_---UtUt = --UT "_Z '2ck 2ck

where we have used Eq. (16), and [dV/dzl is the vertical

derivative of the total velocity. Basically this is our param-
etrization for k.

To model particle diffusion, we need a model of the

eddy frequencies (Section 2.3 and Appendix B). This re-

sults from an understanding of the energetics of the turbu-

lence. A common approximation is made that turbulence

is in a local production-dissipation equilibrium; using a

typical expression for the local production rate @ of k

(Rodi 1980, Eqs. (2.34), (2.48), (2.60); Hinze 1975), this

approximation yields

e=@_-v f kOz/,

where e is the dissipation rate of the turbulent kinetic
energy k. Combining Eqs. (30) and (31) yields the Kolmo-

gorov-Prandtl formula

v v = c_k2/e, (32)

where c_ = 4c_/9 _ 0.09 (Rodi 1980). We obtain an expres-
sion for the dissipation rate e by rewriting Eq. (31) in the
form

£ _-- PT = UT O) _- C/x K¢.O

(33)

where we have used Eq. (30) and defined the mean field

vorticity oJ = [dV/dz[ = [AWL[ = Roft. By definition of

k and e, the time scale for dissipation of k is T_ = k/e =

(cl/2Ro_) 1. Turbulence folklore holds that the (large)
energy-containing eddies lose a significant fraction of their

energy in a turnover time (Tennekes and Lumley 1972,

p. 21); that is, T_ -_ 27r/f_e, where f_e is the large eddy
turnover frequency. Thus,

_'_e _ 27r = 2TrCl/2o9 = 2_cI/2Ro _
T_

2Rof_ _ 40f_ - 160fL (34)

Although the factor of two is somewhat uncertain in the

above expression for f_e, this relationship provides us

with an important new insight into the environment of

interest. Specifically, in the case where the particles have

settled into such a thin layer that the vertical scale is

comparable to L E, the large eddy turnover frequency is

more than an order of magnitude faster than the orbital

frequency. By way of contrast, most workers in the field

(following Safronov 1969 and V61k et al. 1980) assume
(30) that the turnover frequency of the large (outer or integral)

scale eddies, _2e, is comparable to the local rotation fre-

quency _ in the nebula. This assumption may be satisfac-
tory for modeling convective turbulence with vertical

length scales comparable to the gas scale height. In fact,

recent computational simulations verify its validity in the

general case where the rotation alone provides the driving

mechanism (Coleman et al. 1990, 1992). However, we

believe Eq. (34) is more appropriate for our thinner, shear-

driven boundary layers. This is a result of our somewhat

mixed regime: the turbulent boundary layer is fundamen-

tally driven by the imposed velocity difference _V K, but

the gas can only sustain a vertical length scale constrained

by the nebula rotation frequency (on the order of the

Ekman length). The ratio of these quantities is the time

(31) scale of the turbulence, and gives the larger than expected
value of fte. In a normal Ekman layer, the only relevant

time scale is that of the rotation. The significance of this

distinction is primarily for the diffusion of particles. Spe-

cifically, our model for particle transport (Section 3, Ap-

pendix B) involves a diffusion coefficient which is a func-
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tion of both the particle stopping time in the gas and the

eddy frequency. We return to the potential implications

of the overall process in Section 5.

By way of building credibility in these relationships,

other quantities of interest can be estimated from them.

For example, defining a typical (one-dimensional) turbu-

lent velocity VT = fAV = _ we rewrite Eq. (26) as

_4_4 .2 _ (2c4c4_ k__ CvC8 UT
(35)

For comparison, we may rewrite Eq. (30) as

k = ct, 1/2uv d--_7 = c_, I/2pTRO_'_

or

C,J2( )/*

PT _ G " (36)

Comparing Eqs. (35) and (36) with (28) and solving for J;
we find

C L

adopting c_ = 0.045 (Coakely 1987), c_ = 0.09, ca = 2.5,
and cc = 1.5. A rough fluid-dynamical rule of thumb
states that in turbulence surrounding a jet, which is a 2-

D analog to our situation near the midplane, f_ 0.05 -

0.1 (Ruff and Faeth 1987). The agreement with the above

scaling estimates is fairly good--the difference might even

be entirely due to the difference between 1-D and 2-D

geometry.
These scaling results provide physical justification for

a simplifying assumption we noted in the previous section,

namely that turbulence persists even very near the mid-

plane where velocity shears formally vanish. A character-

istic time scale tT for transport of turbulence over vertical

length scale z is on the order of Z2/pT = z,Z/(L2_,) =

(Z/LE)2_- I. In contrast, turbulence is dissipated on a time

scale (2_r/f_e) = (cl/2Ro_) I from Eq. (33). Thus, turbu-
lence can be transported into the midplane from shear

production regions within z -_ LE(c,uRo) J/2 _ 0.4L E on

a time scale which is comparable to or shorter than its

dissipation time, and one would expect turbulence to per-

sist throughout the small part of the midplane region

where the velocity gradient rigorously vanishes. This as-
sumption of constant viscosity through the midplane has

also been made by Weidenschilling and Cuzzi (1993), and

we believe it is a reasonable approximation for the pres-

ent. Clearly, however, this aspect of the problem deserves

more study. In the future we plan to employ more sophisti-

cated turbulence models, but for the present adopt a ca-

nonical set of G = 0.045, ca = 2.5, and c L = 1.5.

2.3. Modeling Particle Dispersion; the Schmidt
Number

The time-averaged particle momentum and mass Eqs.
fr ''(9)-(11) involve correlation terms of the o m ppVpi, where

r r
lop is a fluctuation in particle density and Vpi is the simulta-
neous fluctuation in the ith component of the particle

velocity. Uncertainty as to how these terms should be

modeled has presented significant difficulties to workers

in other fields, leading most to abandon the Reynolds- or

time-averaging technique altogether in favor of Favre-

or mass-averaging (Champney and Cuzzi 1990; see also

Appendix A) which removes them from the equations by
definition.

However, we became dissatisfied with the Favre ap-

proach for the reasons detailed in Appendix A. Instead,

we Reynolds-averaged all of the equations and retained

the density correlation terms. We modeled these mass

fluxes by the gradient diffusion hypothesis (GDH), widely

used in engineering computational fluid dynamics. This
assumes that the particle flux is proportional to the mean

gradient of the particle density:

o;% = DvG. (38)

In turn, the diffusion coefficient D is proportional to the

turbulent viscosity uT,

D = PT/SC, (39)

where the dimensionless coefficient Sc is called the

Schmidt number (see Appendix B). For example, the par-

ticle continuity Eq. (15) may be written

0_ 0 (
tOP q- _ _ppWp Sc 0g/

(40)

2.3.1. The Schmidt number. The Schmidt number is

usually considered to be a function of the Stokes number

St, defined as

St =- q/Y, (41)

where Y is called the integral time scale of the turbulence.
Most researchers take Y = 1/12 after Safronov (1969).

However, as explained in Section 2.2.2, we believe that

more generally Y -=-f_-J 2 2 1= cac_fZ . Safronov (1969) also

assumed that a typical particle would develop a velocity

fluctuation Up _ U'g/(1 + St); this implies
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Sc = (1 + St) 2. (42)

As shown in Appendix B, however, we have derived a

formula (B15) for the Schmidt number that more fully

captures the physics of particle interactions with a spec-
trum of turbulent eddies:

Sc = (I + St)X/I + 3_2p/2k. (43)

Although it is not explicitly stated in their paper, V61k et
al. (1980) obtained a similar functional form (but without

the correction factor in _p). Equation (43) above also
appears to be consistent with the theoretical results plot-

ted in Figs. 6-8 of Canuto and Battaglia (1988). Figure 1

graphs Eqs. (42) and (43) for Wp _--- 0, along with a numeri-
cal model and laboratory measurements of Sc versus St

from Crowe et al. (1985). For the purpose of this paper,

we are concerned primarily with large particles with St

> 1. As the figure shows, the slope of Eq. (43) fits both
the data and the numerical model in this region better

than that of Eq. (42). Accordingly, we have adopted Eq.

(43) as our basic prescription for the Schmidt number.

For comparison, Fig. 2 shows Sc as a function of particle
size for several locations in the nebula.

2.3.2. Drag coefficients. We have followed the formula-

tion of drag coefficients by Weidenschilling (1977). The

drag force on a particle of radius rp depends on the size
of the particle relative to the mean free path X of a gas

molecule (X _ (r/1 AU) 11/4 cm in the model nebulae pre-

sented in Section 3),

CD 9
FD = 2- ,rrr2pg(_p _g)2, rp > _ X (44)

4 2 < 9 k, (45)FD = "5 7rrppg IVp -- VglC , rp

where c is the thermal speed of the gas molecules. These

are known as the Stokes and Epstein regimes, respec-
tively. In the Stokes (large particle) regime, the drag coef-

E
ficient C D depends on the particle Reynolds number

Rep = (2rpl_ p - _gl)/Vm of the flow past the particle as .-E2
E

(for spheres):
CO

CD = 24Repl, Rep< 1; (46)

CD = 24Rep °6, 1 <Rep<800; (47)

CD = 0.44, Rep > 800. (48)

The stopping time t_ is then given by

mlVp - Vgl
t_ - (49)

FD
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FIG. 1. Schmidt number Sc for particles of various sizes. Solid

curve, our model (Eq. (43)) with wv = 0. Dotted curve, Safronov's

model (Eq. (42)). Dashed curve, numerical model of Crowe et al. (1985).

The various points are experimental data, taken from Crowe et al.

(1985).

For rp < (9/4)Xg (Epstein flow regime),

t_ - O._rp (50)
pg C

For rp > (9/4)Xg (Stokes flow regime),

8 Ps rp

ts - 3 pg CD]Vp - Vg] " (51)

Note that the drag coefficient A = (pgts)-l presented by

Nakagawa et al. (1986, equation 24) in the Stokes regime
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FIG. 2. Schmidt number Sc versus particle radius at several loca-

tions in a typical solar nebula (e.g., Hayashi 1981). Solid line, r = 1

AU; dotted line, r = 2.2 AU; short dash line, r = 5 AU; long dash line,

r = 10 AU; dot-dash line, r = 30 AU.
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is a factor of 3/2 larger than that of Weidenschilling (1977),

due to their use of a Maxwellian kinetic expression um =

(1/3)cX for the kinematic viscosity instead of the more

correct (1/2)cX (Kennard 1938, Rocard 1952). Further-

more, Nakagawa et al. (1986) use the Rep -< 1 expression,
which is not valid for particles larger than about 10 cm
at 1 AU or about 1 cm in circumplanetary nebulae; it is,

however, valid to particle radii up to 1000 cm at 10 AU.

Note also that ts is independent of velocity for small parti-
cles, both in the Epstein flow regime (Eq. (50)) and in the

Stokes regime for Rep -< 1 (Eq. (46)). For larger particles,

FD (and ts) depend on the instantaneous velocity differ-
ence between the gas and particles, which rigorously in-

cludes turbulent velocity fluctuations. We have neglected

this dependence in Appendix A, treating ts as constant

for the purposes of Reynolds averaging based on time

scale arguments. However, our numerical technique

allows the particle drag coefficient, stopping time, and

Schmidt number (Section 2.3.1) to be varied in a self-

consistent way as the particles settle or attain different

velocities relative to the gas. In the models, we incorpo-

rate the effects of turbulent velocity fluctuations on the

drag coefficients. We define a velocity scale for each loca-

tion and particle size which is the quadratic sum of the

mean drift velocity and gas turbulent velocity and use this

scale in place of [Vp - Vg[ to determine the appropriate
particle Reynolds number, the stopping time, and the
Schmidt number.

2.4. The Numerical Approach

For the moment, we are studying a narrow annulus at

an arbitrary radial location in the nebula, but nothing in

the setup of the code prevents us from extending the code
to two dimensions. The numerical model itself is used to

solve for the first-order perturbed quantities described in

Section 2.1. The radial and azimuthal components of the

momentum equations detailed in Appendix A are solved
in a nonconservative form. The nonconservative form is

employed instead of the more commonly used conserva-
tive form to minimize roundoff errors. Roundoff errors

may arise when the conservative variables (pu, pv, pw,

ppUp .... ) are divided by the density (p, Op) to obtain

primitive variables (u, v ..... up,..). With the noncon-
servative form, this is avoided since we solve directly for

the primitive variables. Zero gradient boundary condi-
tions are assumed for the gas at the upper boundary of

the grid and at the midplane. For the particles, zero gradi-

ent was assumed at the midplane but at the top of the

grid the radial and azimuthal velocities are assumed to

be the analytic values of Nakagawa et al. (1986) in the

limit pp = 0. Zero gradient boundary conditions were
used at all radial boundaries. As noted earlier, we do not

solve for the gas vertical velocity w. At an earlier stage

in our modeling, we experienced difficulty with unstable

sound wave modes in the vertical direction. We avoided

this problem by assuming that the vertical nebula pressure

gradient maintains the gas in hydrostatic equilibrium with

no significant vertical velocity, in the future we hope to
relax this constraint.

Another stability problem was encountered in the verti-

cal momentum equation of the particle phase, caused by

the terms containing O'pW'pwhich originated from averaging
the convection term (see Appendix A). However, it can
be observed that, in the I-D case, the particle continuity

equation and the particle vertical momentum equation are

coupled to the other two particle momentum equations

only through the value of the turbulent viscosity. Because
of this situation, we have adopted a hybrid solution

scheme. The particle continuity and vertical momentum

equations, which are strongly coupled, are solved simulta-

neously in a conservative form using first-order, upwind

differencing for the convective terms and central differ-

encing for the viscous terms. Then pp and w v are updated
to the next time step, and the gas and particle radial and
azimuthal momentum equations are solved in a noncon-

servative form using an explicit predictor-corrector

scheme due to MacCormack (1969). This numerical ap-

proach was found to be more stable at the cost of some

accuracy (however, as discussed below, the problem is

not yet completely solved).
Due to residual numerical instabilities, we were forced

to use one additional trick, and implement an adaptive

coefficient approach to our most sensitive or stiff terms.

By trial and error, we realized that most of our numerical

difficulties arose from only two terms in the Wp equation

(involving products ofwp,p'pW'p, and their derivatives). We
decided on an approach where these two terms were

multiplied by a stabilizing factor VCOEF, which rose from

a value of 0.5 at an arbitrary initial state to a value of 1.0

when the particle vertical velocity began to vary by less

than some specified fraction (10 -4 to l0 7) per time step.

We found that this approach allowed the numerical

algorithm to avoid numerical instabilities and approach

steady state for the cases presented in Section 4. How-

ever, we were not able to allow all cases to relax to the

(rigorously correct) VCOEF = 1 at all vertical levels.
The first case described in Section 4, (1 AU, 10 cm particle

radius) did converge to a steady-state solution with

VCOEF = 1 for all particle density values shown. That

is, for pp > 10 -4 pg, VCOEF = 1 and the equations being
solved are exactly correct. For this case, we explored the

implications of allowing the value of VCOEF to relax to
1.0 over different vertical ranges. We ran four cases with

different convergence criteria, resulting in profiles of
VCOEF which relaxed from 0.5 to 1.0 over a smaller

range of altitudes. In the most extreme case, we forced
VCOEF to remain at 0.5 throughout the entire vertical

range. The vertical profiles for all quantities were indistin-
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guishable. This is important because the cases involving

larger particles exhibit more stubborn numerical instabili-

ties; in most of these cases we were forced to keep our

criterion for relaxing to VCOEF -- 1 so restrictive (in

terms of fractional change in vertical velocity) that the
final value was never attained over a significant fraction

of the vertical range. Effectively then, in these cases we

solve a "more amenable" equation in regimes subject to
numerical instability, with the coefficient of the trouble-

some term being half of the exact value. In all cases, the

exact equation is operative for a range of grid points at
the midplane and at the top of the grid. Similar substitution

of a more "useable" equation for a more rigorously cor-

rect one was used by Shu et al. (1985, Eq. 82) in their

analysis of nonlinear spiral density waves in planetary

rings. Although we cannot, because of this lack of rigor,

claim the solutions to be a precise match to reality in

regions where the approximately correct set of equations

is being solved, we believe that these solutions retain their

physical significance. We base our belief primarily on the

fact that the coefficient change from 0.5 to 1.0 produced

no discernible difference in the 1-AU, 10-cm-radius pro-

files or in other cases where we have compared partially

relaxed profiles with those in which VCOEF was forced

to remain at 0.5 throughout. Clearly, more work is needed

to obtain an improved solution technique. It may be that

time-like iteration needs to be replaced by space-like itera-

tion; we intend to explore this in the future.

Since we are only interested in steady-state solutions,

the small loss of temporal accuracy was not a concern.

However, particle mass loss was observed in the results,

caused by excessive numerical diffusion arising from the

lack of spatial accuracy. Interestingly, a similar problem
was noted by Sussman and Wilson (1991) for chemical

flows, who solved the corresponding (particle) equation

in logarithmic form. Unfortunately, this approach is not
applicable to the two-phase flows studied here, because

the phases (gas and particles) move at different velocities,

whereas in the nonequilibrium flows of Sussman and Wil-

son (1991), all molecules in the mixture move at the same

velocity. To compensate for the loss of particle mass in

our calculation, an integrodifferentiat correction is applied

periodically. In steady state, Opp/Ot = 0, so that from the
particle continuity Eq. (40),

VT 0Pe = C, (52)
ppWp -- Sc OZ

In the numerical model, the profile of _p is updated using
Eq. (53) above expressed at the current time step, and

the value of _p(0) is determined from the total particle
mass. This correction is employed roughly every thou-

sand time steps, and effectively speeds convergence to

steady state while conserving mass by definition. No sig-

nificant effect is noticed on the behavior of any of the

other variables due to these occasional updates.

Our code must deal with particle density varying over

more than 10 orders of magnitude. Several terms contain

nondimensional gradients of the form (1/-pp)Opp/OZ, which
can cause numerical difficulties at very small densities,

where we know physically there is little effect. In the

results presented in Section 4, we do not allow the particle

density to fall below a certain minimum Pp,min which may
be varied. The specific value of this parameter does affect

the detailed shape of the particle fall velocity profile at

high altitudes, but not in a qualitative sense. For example,

the very abrupt transition between "falling" and "steady-

state" values of Np seems to be related to the choice of

Pp,min" Physically, we believe in the reality of this transi-
tion; in actuality it may be less abrupt than seen in the

model results. Smaller values of Pp,min allow a smooth
particle density profile to continue to larger altitudes and

help the stability of the code in some situations; larger

values are stabilizing in other regions of parameter phase

space. Profiles in this paper assume Pp,min at least 20 orders
of magnitude smaller than that of the gas.

Finally, we treated particles with very long stopping

times t_ > n-_ -1, which are underdamped, by an approxi-
mation also used by Weidenschilling (1984, 1988). In the

underdamped case, particles oscillate about the midplane

and are essentially executing inclined orbits. Gas drag
slowly damps their inclinations, and a layer of such parti-

cles might be thought of as "settling" at the rate at which

inclinations damp. Expressions for the inclination damp-

ing rate (Adachi et al. 1976) lead to an effective terminal

settling velocity of z/t S, which we substitute in our equa-

tions for the mean particle vertical velocity in this limit.

That is, upward diffusion need only balance this slower

settling velocity in order for the layer to have a steady-
state vertical thickness. The actual instantaneous vertical

velocity zf_ for such particles is used to correct the

Schmidt number for streamline-crossing effects but is neg-

ligible compared to the radial and tangential velocities in

calculating the velocity-dependent drag coefficients.

where C is a constant. Evaluating the left side of Eq. (52)

at z = 0 gives C = 0, while integrating it leads to the

equality

pp(z) exp ( (z Sc _ )fip(O_ = \JO PT p dz . (53)

3. NEBULA MODEL PHYSICAL PROPERTIES

For the purpose of this work, we have adopted a simple

formulation for the physical characteristics of the pro-

toplanetary nebula. We take the total mass density o-(r)

and temperature T(r) of the disk to be of the form
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o-(r) = cr0 (54)

T(r) = TO (r t ,1, (55)
\ro/

where r0 is a reference radius with Keplerian orbital fre-

quency f_0 and velocity VK. We assume that the disk is

vertically isothermal at temperature T(r).

The gas vertical scale height H is

H = c/O = TI/2_-_ i

(56)

\ ro/ =- H o \ ro/ "

The average gas density pg (over a scale height) and gas
pressure P are then

Pg-2H-2H 0 \r--o� ==-Po _ • (57)

For the purposes of this paper, the midplane gas density

is taken to be the same as this average value. Also,

P pgRgT poRgTo (r) (s+q)- - . (58)
IX IX \ ro/

Nakagawa et al. (1986), following Adachi et al. (1976)

designate the small perturbation to the radial force due

to pressure support as 7, where

al. 1988, Cuzzi and Weidenschilling 1992, Miyake and

Nakagawa 1992, 1993). For a quiescent protoplanetary

nebula with parameters in this range, the perturbation
parameter _) is approximately I0 -3. In Table i we show

some specific examples oft over a range of nebula param-

eters. Typically, nebula gas orbits at a local velocity

v0 = vK(1 - _).

In this paper, we use a standard "minimum mass"

circumstellar nebula with M D = 0.0425M o, p = 1.5, and

q = 0.5. This leads to a total surface mass density o-0 -_

1700 g cm -2 at the reference radius of 1 AU. In the base-
line model, the gas density at I AU is 1.4 x 10 9 g cm-3

and the temperature is 280 K. The molecular mean free

path is about 1 cm, so most of the particles at 1 AU are
in the Stokes drag regime (Section 2.3.2). Because it is

too warm for water ice to condense, the minimum mass

fraction of 5.3 × 10 3 gives the particles a surface mass

density of about 9 g cm -2. At 10 AU, the gas volume

mass density is 2 × 10 12g cm-3, the surface mass density

is about 55 g cm 2, the temperature is 90 K, and the

particles, with all volatiles condensed, have surface den-
sity of about 0.6 g cm 2. The molecular mean free path

is about 600 cm, so most of the particles at 10 AU are in

the Epstein drag regime (Section 2.3.2). We will also show

some typical results for a circumstellar nebula with mid-

plane temperature at 1 AU in the range of 1000 K. The

global level of turbulence in such a hot nebula is unknown,

so our neglect of any turbulence besides that driven by

the particle layer is open to question. However, we in-

clude this case as an indication of the temperature sensi-

tivity of our results.

4. RESULTS

Or 2r2_21_ \q--_/ "

(59)

One can obtain the reference surface mass density in

terms of the global disk parameters by normalization:

2-p , 0J  60,
Combinations of observational evidence and theoretical

expectations (e.g., Beckwith et al. 1990, Beckwith and

Sargent 1991, Cassen 1992) lead one to consider a range

1 3
0< p < _, and T o _ 200(1 + O'0/_) TM _ 280K,_<q<_, D

where K is the nebular opacity in the thermal infrared

(Pollack et al. 1985, Ruden and Pollack 1991, Mizuno et

We will present representative results which describe

the behavior of the particle and gas phases near the mid-

plane for a variety of particle radii and at a variety of

nebula locations. First we quickly review the significant

physics. Unperturbed particles orbit at the Keplerian rate;

unperturbed gas at a pressure-supported rate. Mutual gas

drag conveys orbital angular momentum from the parti-

cles to the gas, decreasing the orbital velocities of the

particles and increasing that of the gas. This results in

inward radial drifts for the particles and outward radial

flow for the associated gas.

Up to this point, the physics is adequately captured by

the analytical solutions of Nakagawa et al. (1986). We

made a comparison between an early version of our code

and the analytical solutions of Nakagawa et al. (1986) for

a realistic range of nebula parameters, and good

agreement was achieved even though we had to remove
several advective terms from our model, and set the neb-

ula viscosity to zero, in order to compare our results with

their simplified formulation. Figure 3 compares particle
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TABLE I

Variation of the Perturbation Parameter _q (Eqs. (8) and (59)) with Nebula Location r = 1, 10,

and 100 AU, Surface Mass Density Radial Variation Index p, Temperature Radial Variation Index

q, and Midplane Temperature T 0.

TO = 280K TO = 1000K

r = 1AU /= 1AU

q = 0 0.5 l q = 0 0.5 I
T = 280 280 280 T = 1000 1000 1000

p 0.00 8.9E-04 1.2E-03 1.5E-03 p 0.00 3.2E-03 4.2E-03 5.3E-03

0.33 1.1E-03 1.4E-03 1.7E-03 0.33 3.9E-03 4.9E-03 6.0E-03
0.67 1.3E-03 1.6E-03 1.9E-03 0.67 4.6E-03 5.6E-03 6.7E-03

1.00 1.5E-03 1.8E-03 2.1E-03 1.00 5.3E-03 6.3E-03 7.4E-03

1.33 1.7E-03 2.0E-03 2.3E-03 1.33 6.0E-03 7.0E-03 8.1E-03
1.67 1.9E-03 2.2E-03 2.5E-03 1.67 6.7E-03 7.7E-03 8.8E-03

r = 10AU r = 10AU

q = 0 0.5 1 q = 0 0.5 1
T = 280 89 28 T- 1000 316 100

p 0.00 8.9E-03 3.7E-03 1.5E-03 p 0.00 3.2E-02 1.3E-02 5.3E-03

0.33 1. IE-02 4.4E-03 1.7E-03 0.33 3.9E-02 1.6E-02 6.0E-03

0.67 1.3E-02 5.0E-03 1.9E-03 0.67 4.6E-02 1.8E-02 6.7E-03
1.00 1.5E-02 5.6E-03 2.1E-03 1.00 5.3E-02 2.0E-02 7.4E-03

1.33 1.7E-02 6.2E-03 2.3E-03 1.33 6.0E-02 2.2E-02 8.1E-03

1.67 1.9E-02 6.8E-03 2.5E-03 1.67 6.7E-02 2.4E-02 8.8E-03

r = 100 AU r = 100AU

q = 0 0.5 1 q = 0 0.5 1
T- 280 28 2.8 T = 1000 100 10

p 0.00 8.9E-02 1.2E-02 1.5E-03 p 0.00 3.2E-01 4.2E-02 5.3E-03

0.33 1.1E-01 1.4E-02 1.7E-03 0.33 3.9E-01 4.9E-02 6.0E-03
0.67 1.3E-01 1.6E-02 1.9E-03 0.67 4.6E-01 5.6E-02 6.7E-03

1.00 1.5E-01 1.8E-02 2.1E-03 1.00 5.3E-01 6.3E-02 7.4E-03

1.33 1.7E-01 2.0E-02 2.3E-03 1.33 6.0E-01 7.0E-02 8.1E-03
1.67 1.9E-01 2.2E-02 2.5E-03 1.67 6.7E-01 7.7E-02 8.8E-03

Note. The nebula model is described in Section 3.

and gas velocities obtained from our code with the analyti-
cal results of Nakagawa et al. The velocities shown are

relative to circular, equatorial motion at the Keplerian rate
(for the particles) and relative to the pressure-supported
orbital rate (for the gas). Also shown is the particle density
profile which produces these velocities. The gas entrained

within the dense particle layer near the midplane is driven
to more rapid orbital velocity by drag with the particles.
As the headwind experienced by individual particles de-
creases, particles locally cease their inward radial drift.
Since the orbital velocity difference has not reached zero,
the gas within the layer drifts radially outward relative to
the surrounding gas;its radial pressure gradient still exists
but it is receiving angular momentum from the particles.
However, without inclusion of viscous, advective, and
diffusion terms, no vertical transport of mass or momen-
tum can be modeled, so the mean velocity profiles as well
as the particle density profile remain undefined by this
model.

Additional physics is included in the model we present
here. Alteration of the vertical profile of gas velocity by
the particle layer produces vertical wind shear, which
generates turbulence and turbulent viscosity. The local
viscosity z,T and turbulent kinetic energy k are self-consis-
tent functions of the local mean velocity gradients, using
simple physically based models which incorporate experi-
mentally determined parameters (section 2.2.1). Ensuing
viscous stresses modify the vertical velocity distribution,
and therefore feed back into the viscosity profile. The
particle density is self-consistently determined by a bal-
ance between downward settling under gravity and up-
ward diffusion in the local turbulence. The particle diffu-
sion coefficient is related to the turbulent viscosity by the
Schmidt number, which is a function of the local drag
coefficients and eddy turnover frequency (Section 2.3).
A fully self-consistent steady state is achieved in which
the particle density profile generates sufficient turbulent
diffusion to balance continual settling.



118 CUZZI, DOBROVOLSKIS, AND CHAMPNEY

is a function of altitude, w r is most simply understood

only when the particle stopping time is short compared
with the time it takes a particle to fall by a distance which

changes its vertical acceleration significantly. This is the

case in Figs. 4-6, but not in other cases to be shown.
One final function is shown with heavy long dashed

lines; the effective diffusion velocity wdiff, which is defined

as

VT 10-P o (62)
WdidZ) -- Sc Pr, Oz '

The quantity waiff may be calculated from a simplified
version of the particle continuity equation. That is, when

the layer is in a steady state, Eq. (52) may be solved

for the appropriate residual settling velocity Wp that can
persist in the presence of upward diffusion. Note in Fig.
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FIG. 7. Results for 60-cm-radius particles at l AU in the nebula,

where the temperature is 280 K. Legend is as in Fig. 4, but here particle

density profile is only shown in G (top). The run in this figure extended

over about 0.5 years, after 5.2 years of evolution. As described in the

text (Section 4.1), the top and bottom panels are horizontally shifted

by the velocity difference AV = _Vk. The gas mass density at this

location is 1.4 x 10 -9 gm cm 3. The vertical velocities Wp, Wdiff, and w r

are expanded horizontally by a factor of 10.

4 that there is excellent agreement between Wp and Wdiff
in the region below 35 km altitude; this tells us that the

particle layer is in steady state throughout this vertical

region--neither settling nor puffing up.
Recall that this is our numerically most well-behaved

case (section 2.4) and achieves full convergence to the

exact equations of motion at all levels of interest.

In Fig. 6, we compare the viscosity and density profiles
for this case with a similar case in which we relaxed our

artificial transport of viscosity into the midplane region

(Sections 2.2.1 and 2.2.2). We tested this case because
the vertical extent of the constant viscosity zone seemed

rather large compared to the transport length scale esti-

mated as _0.4L E in Section 2.2.2. A single time step from

a converged solution for each case is shown in Fig. 6; it

is seen that the particle density profile does flatten slightly
when turbulence is allowed to die out where the local

velocity gradient gets small. However, the change is not

significant.

Figures 7-9 show a more complex case at 1 AU for

considerably more massive particles (60 cm radius). From

Fig. 7, it is seen that the particle year is considerably
thinner than for the 10-cm particles, having a full layer

thickness (at half maximum density) of only about 3000

km (compared to the 30,000-kin thickness in Figs. 4-6).
This is due to the relative difficulty of diffusing these more

massive particles. Roughly speaking, the Schmidt number
Sc here is about 10 times larger than for the 10-cm-radius

particles, due to a combination of stopping time and eddy

frequency effects, so from Eq. (62)one might argue sim-

plistically that the equilibrium density gradient could be
roughly 10 times larger. In fact, the peak particle density

is now more than 10 times that of the gas (a local enhance-
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FIG. 8. Differential velocities for the model of Fig. 7. Solid curve,

radial component; short dashed curve, azimuthal component; dotted

curve, vertical component; dot-dashed curve, log particle mass density

(upper horizontal axis).
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ment of the solids/gas ratio by a factor of about 103 over

cosmic abundance). Note, however, that the peak density

is still about an order of magnitude too small for any sort

of gravitational instability to occur (from Section 1,
Pcrit _ 3 × [0 -7 g cm-3). Well above the midplane where

the particle density is negligible, gas and particle velocities

are essentially those of Weidenschilling (1977). Near the

midplane, the massive particle layer drives the gas nearly
to Keplerian velocity, and inward radial drifts for the

particles decrease (as in Nakagawa et al. 1986). Velocity

differences between particles and gas are shown in Fig-
ure 8.

Figure 7 demonstrates a strong outward flow of gas

across the faces of the dense particle layer. This is due

to exchange of angular momentum between the particles

and the gas. These profiles are quite similar to those seen

in the classical Ekman flow regime (e.g., Batchelor 1967,

Holton 1972). Figure 9 repeats the particle density and

gas velocity profiles from Fig. 7 and shows the vertical

profile of gas dynamic viscosity /xT = PgPT that results.
Because the bulk of the mass in the particle layer is moving

at a well-defined velocity, we may compare our numerical

radial drift results with classical expressions for the shear
stress on a disk in Ekman flow as discussed, for instance,

by Goldreich and Ward (1973). The torque per unit area

on the particle layer is 2rS, where S = pgUTdV/dz is the
shear stress on each face of the particle layer. The torque

is set equal to the divergence of the angular momentum

flux, which may be approximated by O'pUK_p, and results
in a drift velocity

2S 2pgAV 2 (63)
uP = _- _ O-p_Re*"

In the case of Figs. 7-9, with Re* = 55, Eq. (63) above

yields Kp _ 700 cm sec -1, close to the numerical results.

The particle layer in this case is optically thin; its optical

depth or area fraction covered is only about 0.02. The

use of optical depth in this paper is unrelated to radiative

properties, but is a measure of the fractional area covered

by particles integrated over the layer.

The vertical velocity profiles of Figs. 7-9 show interest-

ing differences from those in Figs. 4-6, in that Wp is never

equal to the local terminal velocity Wterm. This is due to
a significant inertia effect, in which fairly large particles

(such as those in Figs. 7-9 with stopping time ts _ 2 x
107 sec) carry the memory of the larger fall velocities

they possessed at higher altitudes. That is, because the

terminal velocity is a function of altitude, falling under-

damped particles cannot be decelerated quickly enough

to match the local Wterm. We have examined the deviations

of Wp from w F seen at high altitudes and have found them
to be reasonable. Note that the particle mean vertical

velocity Wp (light dotted lines) switches from faster than
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curves show extrema of typical (roughly epicyclic) variations in the
profile through the run. Note: velocity scale is in m sec -1 instead of cm
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w v to slower than w F at 9000 km altitude. This transition

indicates where upward diffusion due to turbulence begins

to play a role in slowing the particle settling rate. As noted

in Section 2.4, however, the precise location and abrupt

shape of the transition may be a numerical artifact.

Overall, however, and certainly in the high particle

density regions, Wp and Wdiff are in very good agreement,
indicating a layer in steady state. We may quantify this

somewhat using the residual vertical velocity difference

Wp -- Wdiff "_" 1-2 cm sec-J; at this rate the "lifetime" of
the several-thousand-kilometer-thick layer to settling is

on the order of tens of years, much longer than an orbit

period or the nominal "terminal velocity" settling time

scale. Even this is probably only a lower limit, due to the

necessity to terminate runs before they reach genuine
steady state.

Recall that all solutions other than those of Figs. 4-6

are obtained using equations which are slightly modified

from the exact ones throughout a range of intermediate
altitudes in order to avoid numerical instabilities. This

issue was discussed in Section 2.4.

4.2. Model Results at 10 AU

Figures 10 and 11 show the behavior of a layer of 20-

cm-radius particles at a distance of 10 AU from the star.
Here, the gas density is 2 x 10- _2g cm-3, the temperature

is about 90 K, and the particle surface mass density is

only 0.6 g cm -2. Qualitatively similar behavior is seen as

for the 60-cm particle disk at 1 AU, but here the vertical

length scale is larger. Note from Fig. 10 that the particle
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plane, to illustrate the effect of particle layer self-gravity. This is the

case of Fig. 7 (1 AU, 60-cm-radius particles). (Top) Without self-gravity;

(bottom) with self-gravity. Self-gravity compresses the equilibrium parti-

cle layer only slightly, and the threshold for gravitational instability

(3 × 10 -7) is not approached. Profile of up is off scale in bottom panel.

we compare profiles calculated with and without viscosity
maintained constant across the midplane region; little sig-
nificant difference is seen even in this case where the

particles have stronger settling tendency than in Fig. 4-6.

4.4. Effects of Particle Layer Vertical Self-Gravity

Although we have found that particle densities do not

get sufficiently large for gravitational instability to occur

for any of the cases presented above, we did explore
the effects of particle layer vertical self-gravity on the

solutions. The expression for vertical gravity due to the

particle layer at vertical location z of interest is taken as

zg_ = 27rG pp(Z') dz'. (64)

Typical results are shown in Figs. 17 and 18. The effects
are interesting; as one would expect, vertical self-gravity

does play a role in compressing the layer somewhat; how-
ever, for the cases shown (1 AU, 60 cm particle radius
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FIG. 18. As for Fig. 17, but for the case of Fig. 10 (10 AU, 20-cm-

radius particles). Again, the threshold for gravitational instability at this

location (3 × 10 -]°) is not approached.
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and 10 AU, 20 cm particle radius), the effect is too small

to offset the role of turbulence in preventing the density

from attaining any critical value. In one case shown earlier

(Fig. 12; 10 AU, 60 cm particle radius) where the density

was approaching its threshold value, we would expect

the addition of self-gravity to nudge it higher, probably

allowing it to exceed the threshold for axisymmetric insta-

bility. Generally speaking, then, inclusion of vertical self-

gravity merely shifts the radial location or particle radius

at which one might expect marginal (axisymmetric) gravi-

tational instabilities to occur, but not by a very large

amount. The layer must already be close to an unstable

condition for this effect to come into play.

5. DISCUSSION

In this section we discuss some implications of our

results for accretion of meteorite parent bodies and other

primitive objects in the earliest stages of planetary forma-

tion. In the future we will present additional results for

different assumed nebula properties, including global tur-

bulence, particle size distributions, particle damping of
turbulence, different midplane temperature, and so on.

In most ways (except for the poorly understood global

turbulence) we expect these future results to differ primar-
ily in a quantitative sense.

5.1. Enhancement of Solid�Gas Ratio near the
Nebula Midplane

First, of course, settled particle layers with lifetimes

which appear to be long (relative at least to nominal parti-

cle settling times or orbit periods) provide an environment

for planetesimal formation in which the solid/gas ratio is

enhanced by one to three orders of magnitude compared
to the well-mixed value of 10 -2 . In the context of these

models, an enhancement as large as -103 , in the range

apparently required by some meteoritic oxidation states,
does require a substantial fraction of the mass to have

grown into particles of radius greater than l0 cm. For

instance, the 10-cm-radius particles shown in Fig. 4 ex-

ceed the gas density only by a factor of a few, yielding

an enhancement factor of a few hundred. The only way

that subcentimeter chondrule-sized particles by them-

selves could ever attain significant enhancements by set-
tling in this way to the nebula midplane would be if the

nebula gas density were much less than the minimum
mass value we have assumed.

One intriguing evolutionary scenario involves a poten-

tially nonlinear settling stage. Smallish particles, which

are easily supported in a layer of low vertical velocity

gradient and therefore low viscosity and turbulent kinetic

energy (perhaps even more extended than in Fig. 4), could

reach a state in which further growth leads not only to

increased settling per se but secondarily to sufficiently

increased velocity gradients and Rossby numbers that the

eddy overturn frequency grows, increasing the particle

Schmidt numbers (Section 2.3.1) and further decreasing
the supportive capability of the turbulence. Such a situa-

tion has some aspects of an instability and is certainly
worthy of further study. Coupled modeling of turbulent

flow regimes, particle accumulation, and even radiative

transfer is a desirable goal for the future.

5.2. Random Motions and Collision Velocities

We may estimate the random velocities of the particles

in the midplane region using our calculated viscosity (for

example, in Figs. 9, 10, and 12), its relationship to the
turbulent kinetic energy k (Eq. (30)), and the definition

of the Schmidt number Sc. From Eq. (B11) of Appendix

B, the one-dimensional particle random velocity Cp is ob-
tained from

w' w' 2k 2vvf_Ro 2wr

Cp %% Sc 3Sc 3c_/2Sc .1/2, • (65)3c_ ts

For the case of Fig. 9 (1 AU, 60 cm particle radius),

PT = I'_y/Pg _ 5 X 1010 cm 2 sec -1, Ro _ 80, and Sc _ 85

(from the models, near the midplane), so Cp _ 140 cm

sec -1, consistent with a simple estimate c o -_ OHp from

the full thickness Hp of the particle layer in Fig. 7. Particles
with such large Schmidt numbers are poorly coupled to

any particular eddy and thus uncorrelated with nearby
particles of similar size. Therefore, this would be the

collision velocity of 60-cm-radius particles in such an envi-
ronment; their mutual collision times would be on the

order of rp I times the orbit period, or roughly 50 years.

Obtaining relative velocities in this way for smaller parti-

cles is not straightforward, since nearby objects are en-
trained in the same eddy (V61k et al. 1980).

5.3. Gravitational Instability Precluded

A summary of critical mass densities Pp,crit required to
achieve the easiest (axisymmetric) small-scale gravita-
tional instability is given is Section 1. Good recent reviews

have been presented by Weidenschilling et al. (1989),
Wetherill (1990), and Safronov (1991). It is clear from the

results of Figs. 4-16 that Pp,crit is not achieved in any of
our simulations at 1 AU and is approached at 10 AU only

by particles of about 1 m in size. Another way to evaluate

the stability at 1 AU, at least, is to note that the typical
random velocities of 140 cm sec -I of the previous subsec-

tion are nearly an order of magnitude larger than the value
of <20 cm sec 1mentioned in Section 1. Our results thus

confirm and extend the suggestions of Weidenschilling
(1980), which were based on dimensional estimates of the

properties of turbulence. Our results show particles of

unit internal density growing to approximately 103 kg be-



126 CUZZI, DOBROVOLSKIS, AND CHAMPNEY

1000

100

10

1

.1

E
.01

v

.001107

"_ 1000

100 _' '"'"'1 ' '"'"'1 ' '"'"'1' '"'"'1 ' '"'"'1 ' '"'"'1 ' '"'"'1_

lO

.1

.01 ___

.001107 ,I,,,,l I,,H,J ,,I,,,,d ,,,,,,I ,,,,,,,I ,,,,,,d ,t,,i,iJ ,,,,,,I ,Iraqi108 109 1010 1011 10 TM 1013 101+ 1015 10 is

Time (s)

FIG. 19. Planetesimal radius as a function of time, for three different

initial radii (solid, 10 m; dotted, 100 m; dashed, 1000 m); and two

midplane environments. (Top) 1 AU (p_ = 3); heavy curves, 60-cm-

radius particles as described in Fig. 7; light curves, 10-cm-radius parti-

cles as shown in Fig. 4. Mass growth is dramatic in a time comparable

to or shorter than commonly accepted nebula lifetimes. For example,

planetesimal radius of roughly 100 km is reached in less than 106 years,

regardless of initial radius. (Bottom) 10 AU (Ps = 1); light curves, 20-

cm-radius particles as described in Figs. 10 and 11; heavy curves, 60-

cm-radius particles as shown in Figs. 14 and 15.

of Fig. 7, and about an order of magnitude smaller for

the 10-cm-radius case of Fig. 4.

Solutions to the growth Eq. (70) for different values of

rp0, and the midplane environments of Figs. 4 and 7 at 1

AU, are shown in Fig. 19 (top). At 1 AU, anything larger
than about 10 m radius grows by accretion to a radius

of roughly 100 km in about 105 years, assuming that all
conditions remain constant; as seen in Fig. 19 (bottom),

growth takes longer at 10 AU. Solutions to the drift Eq.
(72) are shown in Figs. 20 (top) and 20 (bottom); it is clear

that mass growth limits the distance which a growing

planetesimal will drift. In either of the 1-AU environ-

ments, planetesimals grow so fast that they do not drift
more than about 10 -2 AU from their initial location! The

situation is similar at l0 AU. These radial drift results are

smaller than noted by Weidenschilling (1988), because

of the smaller mass growth associated with his smaller

assumed midplane particle mass densities (_p = pg). This

growth effect is also distinct from that of Nakagawa et al.

(1983) in which only 10-km planetesimals were considered
and in which the only role of gas drag was to replenish

planetesimal feeding zones.
We can compare planetesimal growth rates due to dif-

ferential drift with those estimated using the standard

binary accretion formulae (Safronov 1972, Lissauer 1987,

Wetherill 1990). The binary collision growth time t,,,.b may

be approximated by

{dmp'_ ! 4pJ¥

tm.b = m e_-) _jGCrp_Q, (73)
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FIG. 20. Planetesimal radial excursions Ar as a function of time;

(top). Results at I AU (p_ = 3) for three different initial radii (solid, I0 m;

dotted, I00 m; dashed, I000 m) and two different midplane environments

(heavy curves, 60-cm-radius particles as described in Fig. 7; light curves,

10-cm-radius particles as shown in Fig. 4). The linear drift regime at

times less than 102 years or so corresponds to the simple expression in

Eq. (68); however, in all cases, the drift rate decreases because of mass

growth, and the ultimate radial decay of such a planetesimal is no more

than about 10 2 AU. (Bottom) Similar results at l0 AU, as in Fig. i9

(p_ = l).
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wheref G 2 2Vesc/AVp is the gravitational focusing factor,
with Vesc = (2Gmp/rp) 1/2 being the gravitational escape

velocity of the growing planetesimal. It seems to us that

the typical relative velocity AVp _ l03 cm sec -1 >> Cp

102 cm sec -1 is sufficiently small for simple sticking to be
reasonable. That is, the lower relative velocities in the

midplane, due to collective effects (AV r _ _)VK), mitigate
somewhat the uncertainties about the relative roles of

mass accretion and removal during this stage (e.g., Weth-

erill 1990). These velocities are also too large for gravita-

tional focusing to be relevant until the planetesimal grows

to 10 km radius or so. The ratio of the drift-augmented

accretion and simple binary accretion time scales is then

tin,a_ fGO'pf_

t,,,,b 3ppAVp"
(74)

For the case of Fig. 7, the ratio is roughly J_/300, and for

the case of Fig. 4, it is about three times smaller. That is,

in the 60-cm particle layer, the drift-augmented accretion

time scale is faster than the local "binary" accretion time

scale until the gravitational focusing factor of the growing

planetesimal exceeds 300. This requires the planetesimal

to grow (presumably by drift-augmented accretion) to a

radius rp > 140 km for Ps = 3 and AVp _ 1000 cm sec i.
The very limited radial decay of these accreting objects

allows us to consider them as essentially fixed, while the

"particle disk" in which they are embedded drifts rapidly

inward past them. That is, in the 105-106 years or so that

it takes for the above simple planetesimal growth scenario

to unfold, the sub-meter-size disk material, drifting inward

at a rate of approximately 50 to 1000 cm sec _ (10 -4 to

2 X 10 .3 AU year-l), could migrate tens or even hundreds
of astronomical units.

To study the fate of the drifting material, imagine a

critical stage to be that at which the mass in planetesimals

is comparable to the mass in the meter (or smaller) sized

particles. Prior to this, we might think of the midplane as

being "particle disk dominated," with behavior simply

modeled as in Figs. 4 to 16. Toward the end of planetesi-

mal accretion, one might think of the midplane as "plane-

tesimal dominated" and model it using N-body dynamics.

During the intermediate stage, significant planetesimal

growth occurs within a drifting particle layer. We can

estimate the probability (during the intermediate stage)
that inwardly evolving disk material will encounter some

planetesimal in the region r < 2 AU, rather than being
lost into the Sun. Half of the optical depth of the particle

disk of Fig. 7, for example, is about 10 -2. The optical

depth of a comparable mass of planetesimals of radius rp

is "/'p _ 'Tprp/rp -_- 10 -5 (1 km/rp) if we assume comparable
internal densities.

The individual particles within the layer, moving verti-

cally at their random relative velocity %, traverse the

midplane and its optically thin layer ofplanetesimals twice

every orbit period. During the re I crossings that must

occur before a planetesimal is physically encountered and

the particle accreted, the disk particles incur a radial de-

cay by

27r

Ar .... =rpIKp_. (75)

Thus, in drifting some arbitrary distance Ar, a fraction

F_cc _ Ar/z_qc c of the disk particulates is absorbed. The

cases of Figs. 7 and 10 span a range in _p _ 50 to 1000
cm sec -_. Then in traversing a radial range of 2 AU, the

fraction accreted is Facc _ (0.01-1) (1 km/re), for roughly

meter-radius and few-centimeter-radius particles, respec-

tively. The smaller particles drift more slowly and thus

must traverse the planetesimal layer more often in drifting

a certain radial distance, increasing their probability of
being accreted.

Qualitatively taking this line of speculation even one
step further, if this sort of growth scenario is correct,

one might expect growing planetesimals to acquire an

inhomogeneous radial structure and/or mineralogy, accu-

mulating condensed material which originated from suc-

cessively cooler regions of the nebula. These estimates

assume perfect sticking, and the details will depend on

initial conditions to some extent. Eventually, such sim-

plistic "evolutions" will become quantitatively invalid

due to changing midplane conditions by the time the mass

in "planetesimals" becomes much larger than that in the

particle disk. Thus, more detailed modeling would be
useful.

5.5. Outward Motion of Gas, and Entrained Grains

and Chips

The gas velocity profiles in Figs. 7, 10, and 12 show

that streams of outward moving gas flow across the upper

and lower surfaces of the settled particle layer at a peak

relative velocity (at 1 AU) of about _VK/2 (20 m sec -1 at

280 K, or 50 m sec 1 at I000 K). This suggests another
possible mechanism for radial mixing of both solid and

gaseous material from different thermal and composi-

tional regimes.

Small solid particles with St _ 1 will be borne outward in

the systematic outward flow, while traversing the particle
layer within individual turbulent eddies. In the case of

Figs. (4)-(16), the "large" particle layer has a small areal

coverage fraction of particles rp _ O-p/psrp, where ./-p is
the normal optical depth. Each time small grains and chips
traverse the midplane in their gas eddies, they have a

probability "/'p of encountering a large particle and being
accreted. Below we estimate the range of outward motion

Ar (relative to the inwardly drifting particles) that a typical

small grain might experience.
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The interval between crossings of the particle layer is

--LZ/vv --_ fV 1. During the Zp j crossings that must occur
before the chip is accreted onto a larger particle, its rela-

tive radial excursion is (at 1 AU)

Ar - -1 L_- (Ug -- _p)

% - '
(76)

where _g - _p is the differential mean velocity in the re-
gions above the concentrated particle layer. We assume

meter-sized particles in calculating % _ 10 3 and evaluate
Eq. (76) above for the 280 K and 1000 K nebulae of Figs.

7 and 14, respectively, to obtain Ar _ 2-5 AU! This

process might be of relevance in understanding the mix-

ture of high- and low-temperature minerals found in cer-
tain meteorite classes. Essentially, small, high-tempera-

ture fragments can be carried outwards to mix with large,

lower-temperature ensembles which are drifting inwards.
The cases in Figs. 7, 10, and 12, in which the particle

layer is optically thin and well settled, provide a larger
estimate for the range over which such chips might be

transported than a case such as Fig. 4 in which the optical

depth is larger and the outward flow is less dramatic. Thus
the radial mixing process might vary in strength with the

stage of planetesimal growth.
From the standpoint of volatiles, one might imagine

that a systematic flow of warm gas outward across a con-

densation front could significantly enhance the local con-

centration of solid material. A process similar to this was

advocated by Stevenson and Lunine (1988); they sug-

gested normal diffusion of warm, water-vapor-bearing gas
outward across a condensation boundary. Their sugges-

tion involved radial diffusion averaged throughout the

entire vertical scale height of the gaseous nebula, whereas

in contrast, our results imply radial advection within a

thin boundary layer region. An estimate of the amount

of water vapor that could be carried across the water

condensation front by advection is

d
dt mH2° _- 2_rLEUgPgJH20" (77)

At 5 AU, ifpg _ 10 I1 g cm 3, LE _ 1010 cm, fH2 ° = 5 X

10 -3, and _g _" 3 x 103 cm sec -1, (d/dt)mH2 o _ 10 5 Ms

year -I. This amount of solid material could contribute

meaningfully to formation of Jupiter's core if it were all
to remain on the cold side of the condensation front.

However, a complication here, as with the mechanism

of Stevenson and Lunine (1988), is the offsetting inward

motion of the condensate. A full model of gas and particle

motions in the vicinity of a condensation front, where a

significant volatile such as U20 changes state between

gas and solid, is probably needed. Outwardly drifting,

water-laden gas will cool and condense solid material,

either into grains or upon preexisting, inwardly drifting

objects. Also, objects formed cold at larger radii drift
inward across the boundary, becoming warmer and possi-

bly undergoing compositional alteration before releasing
their volatiles to drift back outward. Interesting composi-

tional and fluid dynamical effects could occur simultane-

ously (due to radial gradients of particulate mass density).
These are appropriate subjects for future study.

5.6. Uncertainties and Future Work

An improved parametrization of the turbulent kinetic

energy, with important implications for diffusion terms in

the momentum equations and for eddy overturn frequen-
cies in the Schmidt number model, is clearly a first step.

In making this improvement, we expect to include all
terms dealing with turbulence production, transport, and

dissipation using a full k-equation model (e.g., Rodi 1980,

Champney and Cuzzi 1989) and incorporate within it a
model of particle damping of turbulence as well. This

equation may be derived and modeled using a straightfor-
ward extension of the techniques we have developed for

modeling time-averaged correlation terms (Appendices A

and B). The fundamental constant c_ (Section 2.2.1) is

probably worthy of further investigation, perhaps in the
laboratory. Also, we need to model the behavior of a

distribution of particle sizes (or at least a few diverse

particle sizes) simultaneously. Realistic coagulation mod-
els (Weidenschilling 1988, Weidenschilling and Cuzzi

1993) indicate that the first meter-sized particles arrive at

the midplane while the bulk of the solids still remain dis-

persed in particles too small to settle significantly. The

implications of global turbulence in addition to our local

boundary layer turbulence could be considered in more

detail; any additional contribution from global turbulence
would lead to more vertically extended particle layers.

However, quantification of global turbulence is extremely

uncertain at present. Other nebula parameters need to be

explored, including the qualitatively similar but quantita-

tively different circumplanetary nebulae within which the
satellites of the outer Solar System probably form.

6. CONCLUSIONS

We have developed a methodology for self-consistently

modeling the dynamical and structural properties of a

fully viscous, coupled, two-phase circumstellar or circum-

planetary nebula, in which the gas is pressure supported
and the particles are coupled to the gas only by drag

forces. We use the Reynolds-averaged Navier-Stokes

equations, including compressibility for the particle

phase. We have developed a new model of particle diffu-

sivity in turbulence (our Schmidt number model). Our
numerical solutions have many of the characteristics of

Ekman flow, at least in the limit where the particles are
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)

highly settled (layer thickness -10 4 of the gas scale

height). Our conclusions are that particle layers, although

highly settled relative to the gas (by an enhancement fac-

tor of 10-103) do not attain the large mass volume densities

(small random velocities) which are needed for the layers
to be gravitationally unstable in the Goldreich-Ward

sense (direct collapse to solid planetesimals on dynamic

time scales), at least until they have grown by other means

to masses comparable to most meteorite samples. On the
other hand, rapid accretion of 100-km-radius planetesi-

reals occurs within such an environment with very little

associated radial drift, as a direct result of differential gas

drag. Finally, outwardly directed transport of solid chips
and volatiles coupled with inward-directed transport of

larger particles could lead to significant radial composi-
tional mixing and localized mass enhancements.

APPENDIX A: REYNOLDS AVERAGING

It is most convenient to cast the equations describing the Solar nebula

in a cylindrical coordinate system (r, 0, z). The corresponding velocity

components are (Ug, Vg, Wg) for the gas phase and (Up, %, Wp) for the

particles. In these coordinates, conservation of mass is expressed by

the continuity equation

0 10 (i u) l_0(pv)+_t p+--rat "P + . -_z (pw) = O, (AI)

where t is time and p is either pg or pp, the mass density of the gas or

of the particles, respectively.

The momentum equations may be stated in either conservative or

nonconservative form. As explained below, the conservative form is

the preferred point of departure. In our coordinates, these become

_t (pu)

_t (PV)

r Or oZ Or

4- pv2/r ++pp(U ° - Ug)/ls (A2)

o,. = !±e-o,o/,.,.oo

_(pw)

-+ pp(Vp - Vg)/t s (A3)

+ l O (rpuw) + l _o (pVw) + _z (pW2) = --_zP- pGMz/R3

-+ pp(Wp - Wg)/t_, (A4)

where G is the Newtonian constant of gravitation, M is the mass of the

Sun, and R -= _/_ + z 2 _ r is the distance from the Sun. For the gas

phase, P is simply the thermodynamic pressure and the symbol _+ is a

plus sign, but for the particle phase P = 0 while _+ is a minus sign. in

either case, t_ is the stopping time of the particles in the gas, inversely

proportional to their drag coefficient. Equations (A2)-(A4) above are just

the Navier-Stokes equations in conservative form, with the molecular

viscosity terms replaced by the frictional coupling between the phases.

In order to separate the long-term time evolution of the nebula from

short-term turbulent fluctuations, we use the technique of Reynolds

averaging. First, the dependent variables in (AI)-(A4) are expanded

into means and variations,

p=fi+p', u=ff+u', v=_+v',w=_+w', P=P+p', (A5)

where the overbar denotes a short-term time average and the prime

signifies a short-term fluctuation. For example, expanding Eq. (A1) in

this manner gives

_t (p + p') + (r_Ti + rp'-ff + r_u ' + rp' u ')

+l_o(_+p'-O+-_v' +p'v')

+ _ (-_-_ + O"_ + -_w' + p' w') =0.

(A6)

Next the equations themselves are averaged over short time scales.

This averaging removes short-period terms involving only one primed

quantity, since p' = u' = v' - w' = P' = 0. However, correlations be-

tween two or more fluctuations do not vanish in general. Furthermore,

azimuthal derivatives 0/00 of averaged quantities can be neglected by

the assumption of rotational symmetry. Then (A6) above reduces to

_P+lO(r-Yff+rp'u')+_z(-fiN+Ot. . p'w')=0. (A7)

The momentum Eqs. (A2)-(A4) are treated similarly.

Note the presence in (A7) of the density correlations p'u' and p'w'.

These also appear in the Reynolds-averaged momentum equations, along

with p'v' and various other correlations. Thus the evolution of the mean

density and velocity fields depends on their fluctuations. This is an

example of the closure problem in turbulence studies, in general, these

correlations must be modeled in terms of the mean flow. This situation

is somewhat simpler for the gas than for the particle phase, because

velocities in the gas are much less than the speed of sound. Then the

gas behaves as an incompressible fluid, so pg - pg and its density varia-

tion p_ may be neglected. This approximation does not apply to the

particle phase, however, which behaves as a very compressible fluid.

Compressible fluids are often treated by a somewhat different tech-

nique, called mass-weighted or Favre averaging (Cebeci and Smith

1974). In Favre averaging, the density and pressure are expanded into

mean and fluctuating parts p - _ + p', P - P + P'just as in Reynolds

averaging, but the velocity components are expanded as

u=h+u", v=0+v", w=v_+w", (A8)

where

_ =- -_1-_ = _ + p'u'/-_,

o _ FOI_ = _ + p'v'lfi,

_, =- Fi_I_ = _ + p 'w'l_,

u" = u' - p'u'/_,

v"= v' p'v'/_,

W" = W' -- p'wT/p.

(A9)

Then the equations are time-averaged as before. For example, Favre-

averaging Eq. (A1) gives

o_ 10 +±(fi_,)=o.P + 77,.("fir') oz (A10)

Equation (AI0) above is ostensibly simpler than (A7), because (AI0)

contains no explicit correlation terms which require modeling. The

Favre-averaged momentum equations still contain six velocity correla-
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tions of the form _d'u", u"v", etc., but are also much simpler than the

corresponding Reynolds-averaged equations. The drawback to Favre

averaging is the interpretation of the mean velocity. Turbulent mixing

should cause diffusion of particles, even when their average velocity

vanishes. Equation (A7) can model this behavior through the correlation

terms, but (A10) cannot. As a consequence, our earlier work (Champney

and Cuzzi 1990) used a hybrid approach due to Coakley and Champney

(1985) where the continuity Eq. (A1) was Reynolds-averaged, but the

momentum Eqs. (A2)-(A4) were Favre-averaged. This led to serious
doubts of internal consistency and some spurious results, e.g., Fig.

A1. Consequently, we have recast the entire system in a consistent

Reynolds-averaged form.

Reynolds averaging the nonconservative_form of themomentum equa-
tions generates correlations of the form u'(O/Or)u', w'(O/Oz)u', etc. It
was in order to avoid such terms that we Reynolds averaged the momen-

tum equations in the conservative form (A2)-(A4). As explained in the

text, however, we found by experience that a nonconservative form of

the averaged horizontal momentum equations led to better accuracy.

These were obtained by subtracting _7times Eq. (7) from the Reynolds-

averaged version of Eq. (2) and _ times Eq. (7) from the Reynolds-

averaged version of Eq. (3). The resulting equations take the form

1 O 0 , 0
+ -7- (ro-,) + 7- cr,_ - o'00/r + 2p'v _/r - 2p'u' _rK (AI 1)

r or OZ

- _i l- O_(rP' u') -- P'W' _ u -- _z (wP U_)rOr

_+[_p(_p- _g)+ p'p.'p- p'..g]/t_,

1 c_ -7_ O_ c_ , ,_
+ O_O-o.+O-,.o/r-r_7(rp'v'77 ) -p u _Tv-_.(O v w) (112)Oz " " "

p'w' OZ

In contrast, experience also showed that the vertical momentum equa-
tion was most stable in conservative form. Reynolds averaging Eq. (A4)

directly then gives

±(_) + _U_7+ l o .....Ot Ot rOT "(rpuw) + _Z (pw2) = 0fi0Z -- pGMz/R3

ia 0 10, _-- 10 , ,-
+-" "" (ro-,:)+--%_--_--_rprOr" Oz rot u W)-r_r.(r P w u) (AI3)

%

2_tO'w'gO _, - _ _ - ,-- ± [pp(Wp -- Wg) q- prpWp -- prpW_g]/ls.
0z

Here we have defined the turbulent Reynolds stresses

crr,_-pu'u' p'u'u', o-oz =- -po'w'--p'U'w',
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FIG. A1. Comparison of particle velocities obtained using Reynolds

(top) and Favre (bottom) averaging. The particle radial, longitudinal,

and vertical velocities are up, vp, and Wp, respectively. Particle velocities
are shown relative to Keplerian velocity v_ (Section 1.1.1, Section 3,

and Weidenschilling 1977). The particle mass density profile is the

dot-dashed line (mass density scale along the top axis). Drag coefficients

were slightly different in the two cases, accounting for the different

velocities high above the turbulent boundary layer. Drag coefficients in

this comparison also differ from those employed in the remainder of

the paper: for example, in these two cases the Schmidt number is calcu-

lated using the orbital frequency for the eddy turnover frequency, which

somewhat increases the diffusivity of the particles. Nevertheless, these
two cases illustrate the relative differences between Favre- and Reyn-

olds-averaged results. Note in the Favre solution that there is no change

in the particle fall velocity in the turbulent boundary layer, whereas one

would expect turbulent diffusion to diminish it. This is partly an issue
of inconsistent definitions. Furthermore, note the fact that the particle

longitudinal velocities Vpexceed Keplerian near the midplane, apparently
a nonphysical result. In other cases using Favre averaging we have seen

the particles acquire an outward drift velocity near the midplane, also,

we believe, nonphysical, Both of these difficulties are cured in the

Reynolds-averaged solution (top).

0"00=----pO'O' -- p'V'V', o',.: =----pU'w' -- p'U'W',

o-==----_w'w' -- p'w'w', o',o=- -_u'v' p'u'v'

for both phases.

(A14)

It remains to model the correlations appearing in (17) and (A1 l)-(A14)

above. Equation (B8) of Appendix B implies that the terms of the form

O'pu'p - p'vu'g nearly cancel out of Eqs. (All)-(AI3). Presuming O'
enables us also to neglect the triple correlations of the form p'u'v' in
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Eqs. (14). Note, however, that direct numerical simulations of turbu-

lence in a two-phase fluid (Squires and Eaton 1990, 1991a,b) show large

fluctuations in pp which may invalidate this last approximation under
some circumstances.

APPENDIX B: PARTICLE DIFFUSION

When Eqs. (AI1)-(A14) of Appendix A are applied to the particle

phase, we require correlations of the form u'pu' v, U'pVp, etc. between the

particle velocity components. These correlations may be interpreted as

particle momentum fluxes, analogous to the Reynolds stresses in the

gaseous phase. In fact, it proves most useful to express them in terms

of the gas velocity correlations.

Since the fluctuating forces on the particles are dominated by gas

drag, the governing equation for their velocity variations may be written

°u; = (Ug - @)lt_ (B1)

and analogous equations for the other two components v'p and w'p. To

solve these, we Fourier analyze the velocity fluctuations into terms of

the form

Ug(t) = i] [A(o))ei_' + A*(o))e i_,] do),

u'o(t) = fo- [B(o))e i_t + B*(o))e -i'_'] do),

(B2)

22
u;v_u;v; = u_vj(1 + o) t,) (B8)

and analogous results.

Equations (B3)-(B9) above describe the response of the particles to

gas eddies of a single frequency, but the particles are subject to a whole

range of eddies and couple most efficiently to those with the lowest

frequencies. The distribution of frequencies in isotropic turbulence can

be described by the turbulent energy spectrum E(o)), where

(
ugllg vgOg= = _ g :_k- . E(o)ldo). (B9)

(The upper limit really extends to the Kolmogorov frequency, but the

difference is negligible.) Meek and Jones (1973) give

E(o)) _ 2 kY/(1 + y2o)2), (BI0)
71"

where Y is called the "integral time scale." When averaged over this

spectrum, Eqs. (B8) and (B9) give

= k 1 f;E(o)) do)l(l + o)2t2) (BII)

=7 Y do)/(l + y2o)2)(l + o)2t_)=(l + ts/Y)-t'

where A and B are complex amplitudes, o) is an angular frequency, i is

the imaginary unit, and the asterisk denotes the complex conjugate.

Analogous relations hold for the v and w components. Then (B l) above

implies

io)B = (A - B)lt_ _ B = AI(I + io)tO,

io)B* = (A* - B*)lt_ _B* = A* /(1 io)tO

(B3)

and analogous results for the other components. Results similar to (B 11)

above were obtained by V61k et al. (1980) by numerical integration over

a wavenumber spectrum.

Particles falling through a gravitational field actually pass through

different eddies more quickly than indicated above, due to their addi-

tional vertical velocity. To account for this "crossing-trajectories" ef-

fect, the right-hand sides of Eq. (Bll) above should be divided by an

additional factor,

for each frequency.

Since different frequencies are orthogonal, the correlations immedi-

ately become

u'gUg = 2A'A,

9 2
U'pUg = A*B + B*A = 2A*A/(I + o)-ts),

2
U'pU'p = 2B*B = 2A'A�(1 + o)'t_),

a'/i + w-';_lw_w-----Tp= _'/1 + 3_12k (B 12)

(Csanady 1963).

Next consider the correlations ppU'p, p;V'p, and p'pW'p between particle
(B4) density and velocity fluctuations appearing in Eqs. (A7) and (A 11)-(A 13)

of Appendix A. These can be interpreted as mean mass fluxes driven

(B5) by turbulent mixing. It is common to model such fluxes as proportional

to the gradient of the mean particle density, by analogy to the molecular

(B6) diffusion of heat or momentum, in our case, this "gradient diffusion

hypothesis" (GDH) implies

and similarly for v and w. In terms of the gas correlation u£u_, Eqs.

(B5) and (B6) above give

(B7)= = + o) tT).u;,4 .;u; u?4/(l _'

Note that the rms fluctuation _x/'£u_ in u; is less than x/Z, that in

Ug, by a factor of 1/_. Note also the interesting _fact that the

phase lag between the gas forcing and the particle response induces a

correlation coefficient between Up and ug of the same factor, so that

u'oU'g = UpUp. Similarly, analysis of the correlations between different

components gives

0 _ ' ' -DIr--_ = O _p'pu;,=-D_7.p,,,ppV,,= tip O,p'pw'v=-D_zpp, (BI3)

where D is the diffusivity of the particles. Again by a Reynolds-type

analogy, D is taken as proportional to the eddy viscosity ut,

D = ut/Sc, (B14)

where the dimensionless constant of proportionality Sc is known as

the Schmidt number (an analogue of the Prandtl number for thermal
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diffusion). Typically, Sc is taken as 2k/(u'pu'p + V'pV'p + W'pW;). Then

Eqs. (BII) and (B12) above imply

Sc = (I + ts/Y)_/l + 3-_/2k. (B15)

Parameter Definition

rp

I'p

APPENDIX C: LIST OF SYMBOLS P*

Pg

Parameter Definition PP' P'P

Pp,crit

CD

C

Ck

C L

Cp

Cp

C8

Ca

Cv

A/'ac c

AV

A Vg

A Vp

6

f

f_
Face

G

k

L

LE

/

X

Mo

/ZT

Vm

PT

O)

P

P

Drag coefficient (Eqs. (46)-(48))

Gas molecule thermal speed '°p'min

Pressure tensor scaling coefficient (Eq. (30)) P_
Sc

Generic length scaling coefficient

Nebula gas specific heat at constant pressure (Eq. (29)) St

Particle random velocity cr°

1% boundary layer thickness scaling coefficient (Eq. (20))

Kolmogorov-Prandtl coefficient (Eq. (32)) o-p

Prandtl viscosity model coefficient (Eq. (23)) td

radial range traversed by particles prior to accretion (Sec- t_

tion 5.4) t,,,.b

Velocity difference across boundary layer = v K - v 0 (Sec- t,,.d

tion 2.2.1) T0

Velocity difference between Keplerian planetesimal and

embedded midplane gas _P

Velocity difference between Keplerian planetesimal and ZP

drifting particle layer 0

1% lengthscale U, V

Dissipation rate of turbulent kinetic energy k (Eqs. Up

(31)-(33)) _7g, Ug

Pressure gradient force perturbation parameter (Eqs. (8), _p, u'p

(59/) _g, V'g

Ratio of turbulent velocity to overall shear velocity (Eq. _p, V'p

(35)) v°

Gravitational focussing factor for accretion (Section 5.4) vK

Mass fraction of drifting particles accreted onto planetesi- wdiff

mals (Section 5.4) wr

Universal gravitation constant - 6.7 x 10 -s cgs _v, w'o
Y

Particle layer thickness (Section 1)

Turbulent kinetic energy per unit gas mass density (Eq. z

(30))

Generic length scale

Ekman lengthscale (Eq. (20))

Turbulent mixing length in boundary layer (Section 2.2)

Gas molecular mean free path

Solar mass = 2 × 1033 g

Turbulent dynamic viscosity pgv T

Molecular kinematic viscosity -105 cm2sec -1

Turbulent kinematic viscosity (Eqs. (19), (21), (24), (26))

Orbital frequency =2.1 × 10 -7 (/"/1 AU) 3/2

Large eddy turnover frequency (Eq. (34))

Vorticity (Eq. (33))

Gas pressure

Nebula surface mass density radial powerlaw dependence

(3/2; Section 3)

Nebula photosphere temperature radial powerlaw depen-

dence (½; Section 3)

Universal gas constant = 8.31 × 107 cgs (Section 3)

Flow Reynolds number

Critical Reynolds number (Eq. (19))

Particle Reynolds number (Eq. (46))

Richardson number (Eq. (29))

Rossby number (Eq. (25))

Radial coordinate

q

Rg

Re

Re*

Rep

Ri

Ro

I"

Reference radius for nebula physical model (1 AU; Sec-

tion 3)

Planetesimal radius

Particle radius

Roche density (Section 1)

Gas volume mass density near midplane (Section 3)

Mean and fluctuating particle layer volume mass density

Critical value of pp for gravitational instability (Section

1)

Numerical lower limit on pp (Section 2.4)

"Solid" internal density of a particle (Section 2.3.1)

Schmidt number (Eqs. (40) and (B15))

Stokes number (Eq. (41))

Nebula total surface mass density at reference location

(Section 3)

Particle layer surface mass density (Section 1)

Radial drift time of particle due to gas drag (Eqs. (65)-(66))

Stopping time of particle due to gas drag (Eqs. (49)-(51))

Mass growth time due to binary gravitational encounters

Mass growth time due to differential drift effects

Nebula temperature at reference location (280 K; Section

3)

Planetesimal ensemble optical depth (Section 5.4)

Particle layer optical depth (Section 5.5)

Angular coordinate

Generic velocity scales

Planetesimal radial drift velocity (Section 5.4)

Mean and fluctuating gas radial velocity

Mean and fluctuating particle radial velocity

Mean and fluctuating gas azimuthal velocity

Mean and fluctuating particle azimuthal velocity

Pressure stabilized gas rotation velocity (Eq. (7))

Keplerian orbital velocity

Particle vertical "diffusion" velocity (Eq. (62))

Particle terminal vertical velocity (Eq. (61))

Mean and fluctuating particle vertical velocity

Integral time scale of the turbulence (Eq. (41))

Vertical coordinate, from midplane
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